蓝潮网站建设,好用的ppt模板免费下载网站,聊城哪里可以学网站建设呢,个人怎么做旅游网站#x1f57a;作者#xff1a; 迷茫的启明星 本篇内容#xff1a;数据结构时间空间复杂度笔记 #x1f618;欢迎关注#xff1a;#x1f44d;点赞#x1f64c;收藏✍️留言 #x1f3c7;家人们#xff0c;码字不易#xff0c;你的#x1f44d;点赞#x1f64c;收藏❤… 作者 迷茫的启明星 本篇内容数据结构时间空间复杂度笔记 欢迎关注点赞收藏✍️留言 家人们码字不易你的点赞收藏❤️关注对我真的很重要有问题可在评论区提出感谢阅读 持续更新中~ 文章目录1.算法效率1.1 如何衡量一个算法的好坏1.2 算法的复杂度1.3 复杂度在校招中的考察2.时间复杂度2.1 时间复杂度的概念2.2 大O的渐进表示法2.3常见时间复杂度计算举例3.空间复杂度4.常见时间复杂度复杂度oj练习1.算法效率
1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢比如对于以下斐波那契数列 long long Fib(int N)
{if(N 3)return 1;return Fib(N-1) Fib(N-2);
}斐波那契数列的递归实现方式非常简洁但简洁一定好吗那该如何衡量其好与坏呢 1.2 算法的复杂度 算法在编写成可执行程序后运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏一般是从时间和空间两个维度来衡量的即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。 1.3 复杂度在校招中的考察 2.时间复杂度
2.1 时间复杂度的概念 时间复杂度的定义在计算机科学中算法的时间复杂度是一个函数它定量描述了该算法的运行时间。一个算法执行所耗费的时间从理论上说是不能算出来的只有你把你的程序放在机器上跑起来才能知 道。但是我们需要每个算法都上机测试吗是可以都上机测试但是这很麻烦所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例算法中的基本操作的执行次数为算法的时间复杂度。 即找到某条基本语句与问题规模N之间的数学表达式就是算出了该算法的时间复杂度。 // 请计算一下Func1中count语句总共执行了多少次
void Func1(int N)
{
int count 0;
for (int i 0; i N ; i)
{
for (int j 0; j N ; j)
{
count;
}
}
for (int k 0; k 2 * N ; k)
{
count;
}
int M 10;
while (M--)
{
count;
}
printf(%d\n, count);
}Func1 执行的基本操作次数 N 10 F(N) 130N 100 F(N) 10210N 1000 F(N) 1002010 实际中我们计算时间复杂度时我们其实并不一定要计算精确的执行次数而只需要大概执行次数那么这 里我们使用大O的渐进表示法。 2.2 大O的渐进表示法 大O符号Big O notation是用于描述函数渐进行为的数学符号。 推导大O阶方法 1、用常数1取代运行时间中的所有加法常数。 2、在修改后的运行次数函数中只保留最高阶项。 3、如果最高阶项存在且不是1则去除与这个项目相乘的常数。得到的结果就是大O阶。 使用大O的渐进表示法以后Func1的时间复杂度为 ON2 N 10 F(N) 100N 100 F(N) 10000N 1000 F(N) 1000000 通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项简洁明了的表示出了执行次数。 另外有些算法的时间复杂度存在最好、平均和最坏情况 最坏情况任意输入规模的最大运行次数(上界) 平均情况任意输入规模的期望运行次数 最好情况任意输入规模的最小运行次数(下界) 例如在一个长度为N数组中搜索一个数据x 最好情况1次找到 最坏情况N次找到 平均情况N/2次找到 在实际中一般情况关注的是算法的最坏运行情况所以数组中搜索数据时间复杂度为O(N) 2.3常见时间复杂度计算举例 实例1 // 计算Func2的时间复杂度
void Func2(int N)
{int count 0;for (int k 0; k 2 * N ; k){count; }int M 10;while (M--){count;}printf(%d\n, count);
}实例1基本操作执行了2N10次 解析第一个for循环次数为2N,第二个循环次数为10次 实例2: // 计算Func3的时间复杂度
void Func3(int N, int M)
{int count 0;for (int k 0; k M; k){count;}for (int k 0; k N ; k){count;}printf(%d\n, count);
}实例2基本操作执行了MN次有两个未知数M和N时间复杂度为 O(NM) 实例3: // 计算Func4的时间复杂度
void Func4(int N)
{int count 0;for (int k 0; k 100; k){count;}printf(%d\n, count);
}实例3基本操作执行了100次通过推导大O阶方法因为是常数项时间复杂度为 O(1) 实例4: // 计算strchr的时间复杂度
const char * strchr ( const char * str, int character );实例4基本操作执行最好1次最坏N次时间复杂度一般看最坏时间复杂度为 O(N) 解析strchr函数返回查找一个字符串中第一个出现character的位置的指针 实例5: // 计算冒泡排序的时间复杂度
void BubbleSort(int* a, int n)
{assert(a);for (size_t end n; end 0; --end){int exchange 0;for (size_t i 1; i end; i){if (a[i-1] a[i]){Swap(a[i-1], a[i]);exchange 1;}}if (exchange 0)break;}
}
//没有exchange就是最坏情况实例5基本操作执行最好N次最坏执行了(N*(N1)/2次通过推导大O阶方法时间复杂度一般看最坏时间复杂度为 O(N^2 实例6: // 计算二分查找的时间复杂度
int BinarySearch(int* a, int n, int x)
{assert(a);int begin 0;int end n-1;// [begin, end]begin和end是左闭右闭区间因此有号while (begin end){int mid begin ((end-begin)1);if (a[mid] x)begin mid1;else if (a[mid] x)end mid-1;elsereturn mid;}return -1;
}实例6基本操作执行最好1次最坏O(logN)次时间复杂度为 O(logN) pslogN在算法分析中表示是底数为2对数为N。有些地方会写成lgN。 推导 实例7: // 计算阶乘递归Fac的时间复杂度
long long Fac(size_t N)
{
if(0 N)
return 1;
return Fac(N-1)*N;
}实例7通过计算分析发现基本操作递归了N次时间复杂度为O(N)。 实例8: // 计算斐波那契递归Fib的时间复杂度
long long Fib(size_t N)
{if(N 3)return 1;return Fib(N-1) Fib(N-2);
}实例8通过计算分析发现基本操作递归了2N次时间复杂度为O(2N)。 3.空间复杂度 空间复杂度也是一个数学表达式是对一个算法在运行过程中临时占用存储空间大小的量度 。 空间复杂度不是程序占用了多少bytes的空间因为这个也没太大意义所以空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟实践复杂度类似也使用大O渐进表示法。 注意函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。 实例1 // 计算BubbleSort的空间复杂度
void BubbleSort(int* a, int n)
{assert(a);for (size_t end n; end 0; --end){int exchange 0;for (size_t i 1; i end; i){if (a[i-1] a[i]){Swap(a[i-1], a[i]);exchange 1;}}if (exchange 0)break;}
}实例1中使用了常数个额外空间所以空间复杂度为 O(1) 实例2 // 计算Fibonacci的空间复杂度
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n0)return NULL;long long * fibArray (long long *)malloc((n1) * sizeof(long long));fibArray[0] 0;fibArray[1] 1;for (int i 2; i n ; i){fibArray[i] fibArray[i - 1] fibArray [i - 2];}return fibArray;
}实例2动态开辟了N个空间空间复杂度为 O(N) 实例3 // 计算阶乘递归Fac的空间复杂度
long long Fac(size_t N)
{if(N 0)return 1;return Fac(N-1)*N;
}实例3递归调用了N次开辟了N个栈帧每个栈帧使用了常数个空间。空间复杂度为O(N) 4.常见时间复杂度
一般算法常见的复杂度如下 复杂度oj练习
3.1消失的数字OJ链接https://leetcode-cn.com/problems/missing-number-lcci/
int missingNumber(int* nums, int numsSize){int val0;for(int i0;inumsSize;i){val^nums[i];}for(int i0;inumsSize1;i){val^i;}return val;
}使用异或的思想
3.2 旋转数组OJ链接https://leetcode-cn.com/problems/rotate-array/ 思路三开辟新空间
void rotate(int* nums, int numsSize, int k){kk%numsSize;int *c(int *)malloc(sizeof(int)*numsSize);for(int i0;ik;i){c[i] nums[numsSize-ki];}for(int ik;inumsSize;i){c[i]nums[i-k];}for(int i0;inumsSize;i){nums[i] c[i];}
}