塘沽企业网站建设,网络品牌推广方法,餐饮网站制作,广州网站优化工具服务NoSQL-Redis持久化 一、Redis 高可用#xff1a;1.概述#xff1a; 二、Redis持久化#xff1a;1.持久化的功能#xff1a;2.Redis 提供两种方式进行持久化#xff1a; 三、RDB 持久化#xff1a;1.定义#xff1a;2.触发条件#xff1a;3.执行流程#xff1a;4.启动时… NoSQL-Redis持久化 一、Redis 高可用1.概述 二、Redis持久化1.持久化的功能2.Redis 提供两种方式进行持久化 三、RDB 持久化1.定义2.触发条件3.执行流程4.启动时加载5.RDB的优缺点 四、AOF 持久化1.开启AOF2.执行流程3.启动时加载4.AOF的优缺点 五、Redis 性能管理1.查看Redis内存使用2.内存碎片率3.内存使用率4.内回收key 六、RDB和AOF的总结1.RDB和AOF的基本理解2.RDB和AOF持久化的过程3.RDB和AOF的触发方式4.RDB和AOE优先级5.RDB和AOF的优缺点 一、Redis 高可用
1.概述
1在web服务器中高可用是指服务器可以正常访问的时间衡量的标准是在多长时间内可以提供正常服务99.9%、99.99%、99.999%等等。
2在Redis语境中高可用的含义似乎要宽泛一些除了保证提供正常服务如主从分离、快速容灾技术还需要考虑数据容量的扩展、数据安全不会丢失等。
3在Redis中实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群下面分别说明它们的作用以及解决了什么样的问题。
① 持久化持久化是最简单的高可用方法(有时甚至不被归为高可用的手段)主要作用是数据备份即将数据存储在硬盘保证数据不会因进程退出而丢失。
② 主从复制主从复制是高可用Redis的基础哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份以及对于读操作的负载均衡和简单的故障恢复。缺陷故障恢复无法自动化写操作无法负载均衡存储能力受到单机的限制。
③ 哨兵在主从复制的基础上哨兵实现了自动化的故障恢复。缺陷写操作无法负载均衡存储能力受到单机的限制。
④ Cluster集群通过集群Redis解决了写操作无法负载均衡以及存储能力受到单机限制的问题实现了较为完善的高可用方案。
二、Redis持久化
1.持久化的功能
Redis是内存数据库数据都是存储在内存中为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失需要定期将Redis中的数据以某种形式数据或命令从内存保存到硬盘当下次Redis重启时利用持久化文件实现数据恢复。除此之外为了进行灾难备份可以将持久化文件拷贝到一个远程位置。
2.Redis 提供两种方式进行持久化
1RDB 持久化原理是将 Reids在内存中的数据库记录定时保存到磁盘上。 2AOF 持久化append only file原理是将 Reids 的操作日志以追加的方式写入文件类似于MySQL的binlog。
由于AOF持久化的实时性更好即当进程意外退出时丢失的数据更少因此AOF是目前主流的持久化方式不过RDB持久化仍然有其用武之地。
三、RDB 持久化
1.定义
RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化)用二进制压缩存储保存的文件后缀是rdb当Redis重新启动时可以读取快照文件恢复数据。
2.触发条件
RDB持久化的触发分为手动触发和自动触发两种。
1手动触发 save命令和bgsave命令都可以生成RDB文件。 save命令会阻塞Redis服务器进程直到RDB文件创建完毕为止在Redis服务器阻塞期间服务器不能处理任何命令请求。 而bgsave命令会创建一个子进程由子进程来负责创建RDB文件父进程(即Redis主进程)则继续处理请求。
bgsave命令执行过程中只有fork子进程时会阻塞服务器而对于save命令整个过程都会阻塞服务器因此save已基本被废弃线上环境要杜绝save的使用。
2自动触发 在自动触发RDB持久化时Redis也会选择bgsave而不是save来进行持久化。
save m n 自动触发最常见的情况是在配置文件中通过save m n指定当m秒内发生n次变化时会触发bgsave。
vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时都会引起bgsave的调用
save 900 1 当时间到900秒时如果redis数据发生了至少1次变化则执行bgsave
save 300 10 当时间到300秒时如果redis数据发生了至少10次变化则执行bgsave
save 60 10000 当时间到60秒时如果redis数据发生了至少10000次变化则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes3其他自动触发机制 除了save m n 以外还有一些其他情况会触发bgsave ① 在主从复制场景下如果从节点执行全量复制操作则主节点会执行bgsave命令并将rdb文件发送给从节点。 ② 执行shutdown命令时自动执行rdb持久化。
3.执行流程
1Redis父进程首先判断当前是否在执行save或bgsave/bgrewriteaof的子进程如果在执行则bgsave命令直接返回。bgsave/bgrewriteaof的子进程不能同时执行主要是基于性能方面的考虑两个并发的子进程同时执行大量的磁盘写操作可能引起严重的性能问题。 2父进程执行fork操作创建子进程这个过程中父进程是阻塞的Redis不能执行来自客户端的任何命令 3父进程fork后bgsave命令返回”Background saving started”信息并不再阻塞父进程并可以响应其他命令 4子进程创建RDB文件根据父进程内存快照生成临时快照文件完成后对原有文件进行原子替换 5子进程发送信号给父进程表示完成父进程更新统计信息 4.启动时加载
1RDB文件的载入工作是在服务器启动时自动执行的并没有专门的命令。但是由于AOF的优先级更高因此当AOF开启时Redis会优先载入。
2AOF文件来恢复数据只有当AOF关闭时才会在Redis服务器启动时检测RDB文件并自动载入。服务器载入RDB文件期间处于阻塞状态直到载入完成为止。
3Redis载入RDB文件时会对RDB文件进行校验如果文件损坏则日志中会打印错误Redis启动失败。
5.RDB的优缺点
1缺点 ① 数据完整性不如aof ② rdb类似快照完善 ③ 在进行备份时会阻塞进程 2优点 ① 持久化速度块因为保存的数据结果在写入到持久化文件进行压缩来减小自身的体积 ② 集群中主从复制从——主服务器进行同步默认先使用RDB文件进行恢复操作所有同步性能较高
四、AOF 持久化
RDB持久化是将进程数据写入文件而AOF持久化则是将Redis执行的每次写、删除命令记录到单独的日志文件中查询操作不会记录 当Redis重启时再次执行AOF文件中的命令来恢复数据。与RDB相比AOF的实时性更好因此已成为主流的持久化方案。
1.开启AOF
Redis服务器默认开启RDB关闭AOF要开启AOF需要在配置文件中配置
vim /etc/redis/6379.conf
--700行--修改开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename appendonly.aof
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
/etc/init.d/redis_6379 restart2.执行流程
由于需要记录Redis的每条写命令因此AOF不需要触发下面介绍AOF的执行流程。
1命令追加(append) ① Redis先将写命令追加到缓冲区而不是直接写入文件主要是为了避免每次有写命令都直接写入硬盘导致硬盘IO成为Redis负载的瓶颈。 ② 命令追加的格式是Redis命令请求的协议格式它是一种纯文本格式具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。
③ 在AOF文件中除了用于指定数据库的select命令如select 0为选中0号数据库是由Redis添加的其他都是客户端发送来的写命令。
2文件写入(write)和文件同步(sync) Redis提供了多种AOF缓存区的同步文件策略策略涉及到操作系统的write函数和fsync函数说明如下 为了提高文件写入效率在现代操作系统中当用户调用write函数将数据写入文件时操作系统通常会将数据暂存到一个内存缓冲区里当缓冲区被填满或超过了指定时限后才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率但也带来了安全问题如果计算机停机内存缓冲区中的数据会丢失因此系统同时提供了fsync、fdatasync等同步函数可以强制操作系统立刻将缓冲区中的数据写入到硬盘里从而确保数据的安全性。
AOF缓存区的同步文件策略存在三种同步方式它们分别是
vim /etc/redis/6379.conf
--729--
●appendfsync always 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件fsync完成后线程返回。这种情况下每次有写命令都要同步到AOF文件硬盘IO成为性能瓶颈Redis只能支持大约几百TPS写入严重降低了Redis的性能即便是使用固态硬盘SSD每秒大约也只能处理几万个命令而且会大大降低SSD的寿命。●appendfsync no 命令写入aof_buf后调用系统write操作不对AOF文件做fsync同步同步由操作系统负责通常同步周期为30秒。这种情况下文件同步的时间不可控且缓冲区中堆积的数据会很多数据安全性无法保证。●appendfsync everysec 命令写入aof_buf后调用系统write操作write完成后线程返回fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中是性能和数据安全性的平衡因此是Redis的默认配置也是我们推荐的配置。3文件重写(rewrite)
① 文件重写是指定期重写AOF文件减小AOF文件的体积。需要注意的是AOF重写是把Redis进程内的数据转化为写命令同步到新的AOF文件不会对旧的AOF文件进行任何读取、写入操作!
② 关于文件重写需要注意的另一点是对于AOF持久化来说文件重写虽然是强烈推荐的但并不是必须的即使没有文件重写数据也可以被持久化并在Redis启动的时候导入因此在一些现实中会关闭自动的文件重写然后通过定时任务在每天的某一时刻定时执行。
③ 文件重写之所以能够压缩AOF文件原因在于 过期的数据不再写入文件 无效的命令不再写入文件如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。 多条命令可以合并为一个如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。 通过上述内容可以看出由于重写后AOF执行的命令减少了文件重写既可以减少文件占用的空间也可以加快恢复速度。
④ 文件重写的触发分为手动触发和自动触发
手动触发直接调用bgrewriteaof命令该命令的执行与bgsave有些类似都是fork子进程进行具体的工作且都只有在fork时阻塞。自动触发通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时才会自动触发AOF重写即bgrewriteaof操作。
vim /etc/redis/6379.conf
--729--
●auto-aof-rewrite-percentage 100 当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb 当前AOF文件执行BGREWRITEAOF命令的最小值避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF 关于文件重写的流程有两点需要特别注意(1)重写由父进程fork子进程进行(2)重写期间Redis执行的写命令需要追加到新的AOF文件中为此Redis引入了aof_rewrite_buf缓存。⑤ 文件重写的流程如下 1Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程如果存在则bgrewriteaof命令直接返回如果存在 bgsave命令则等bgsave执行完成后再执行。 2父进程执行fork操作创建子进程这个过程中父进程是阻塞的。 3.1父进程fork后bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区并根据appendfsync策略同步到硬盘保证原有AOF机制的正确。 3.2由于fork操作使用写时复制技术子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据防止新AOF文件生成期间丢失这部分数据。也就是说bgrewriteaof执行期间Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。 4子进程根据内存快照按照命令合并规则写入到新的AOF文件。 5.1子进程写完新的AOF文件后向父进程发信号父进程更新统计信息具体可以通过info persistence查看。 5.2父进程把AOF重写缓冲区的数据写入到新的AOF文件这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。 5.3使用新的AOF文件替换老文件完成AOF重写。 3.启动时加载
1当AOF开启时Redis启动时会优先载入AOF文件来恢复数据只有当AOF关闭时才会载入RDB文件恢复数据。
2当AOF开启但AOF文件不存在时即使RDB文件存在也不会加载。
3Redis载入AOF文件时会对AOF文件进行校验如果文件损坏则日志中会打印错误Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整)且aof-load-truncated参数开启则日志中会输出警告Redis忽略掉AOF文件的尾部启动成功。aof-load-truncated参数默认是开启的。
4.AOF的优缺点
1缺点 ① 执行语句一直的情况下AOF备份的内容更大RDB备份的内容较小、备份的时结果、语句
② AOF消耗的性能更大占用磁盘越来越大相当于mysql的增备
2优点
① AOF的数据完整性比RDB高
② 重写功能会对无效的语句进行删除目的是为了节省AOF文件占用磁盘空间
五、Redis 性能管理
1.查看Redis内存使用
info memory2.内存碎片率
1操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量值 used_memory 计算得出。 内存值 used_memory_rss 表示该进程所占物理内存的大小即为操作系统分配给 Redis 实例的内存大小。
2除了用户定义的数据和内部开销以外used_memory_rss 指标还包含了内存碎片的开销 内存碎片是由操作系统低效的分配/回收物理内存导致的不连续的物理内存分配。
3举例来说Redis 需要分配连续内存块来存储 1G 的数据集。如果物理内存上没有超过 1G 的连续内存块 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据该操作就会导致内存碎片的产生。
内存碎片率稍大于1是合理的这个值表示内存碎片率比较低也说明 Redis 没有发生内存交换。内存碎片率超过1.5说明Redis消耗了实际需要物理内存的150%其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令让 Redis 数据库执行保存操作并关闭 Redis 服务再重启服务器。内存碎片率低于1的说明Redis内存分配超出了物理内存操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。
3.内存使用率 redis实例的内存使用率超过可用最大内存操作系统将开始进行内存与swap空间交换。 避免内存交换发生的方法 针对缓存数据大小选择安装 Redis 实例尽可能的使用Hash数据结构存储设置key的过期时间
4.内回收key 内存清理策略保证合理分配redis有限的内存资源。 当达到设置的最大阀值时需选择一种key的回收策略默认情况下回收策略是禁止删除。 vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
volatile-lru使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key针对设置了TTL的key)
volatile-ttl从已设置过期时间的数据集合中挑选即将过期的数据淘汰移除最近过期的key
volatile-random从已设置过期时间的数据集合中随机挑选数据淘汰在设置了TTL的key里随机移除
allkeys-lru使用LRU算法从所有数据集合中淘汰数据移除最少使用的key针对所有的key
allkeys-random从数据集合中任意选择数据淘汰随机移除key
noenviction禁止淘汰数据不删除直到写满时报错六、RDB和AOF的总结
1.RDB和AOF的基本理解
1RDB周期性地把内存中的数据保存到磁盘中。
2AOF从redis的执行操作日志将执行过程同步到磁盘中。
2.RDB和AOF持久化的过程
1RDB① 内存中写入磁盘中保存的方式。
② 结果数据写入磁盘中保存的数据对象。
③ 内存写入磁盘后会进行压缩来减小*.rdb的磁盘占用空间量。
2AOF① 内存中append追加到缓冲区调用CPU资源写入磁盘中。
② 操作日志中的执行语句追加到缓冲区内调用CPU资源写入磁盘中。
③ 内存缓冲磁盘写入后会周期性重写跳过一些“无效操作”保存。
3.RDB和AOF的触发方式
1RDB① 手动触发
② 自动触发save m n。
③ 特殊触发当手动关闭时会进行rdb持久化。/etc/init.d/redis_6379 restart
2AOF① 手动触发
② 自动触发always每条语句同步执行持久化(有强一致性要的场景)
no 从不进行持久化
every second 每秒进行一次AOE持久化(建议使用的均衡型场景)
4.RDB和AOE优先级
因为redis默认是将数据保存在内存中所以若redis启动、关闭时内存中的数据会丢失
在redis每次启动时都会读取持久化文件来会发数据到内存中以保证reids数据的完整性
RDB和AOF优先级aofRDB 配置文件可以指定启动 修改各个参数6379.conf
5.RDB和AOF的优缺点
1RDB持久化
① 优点RDB文件紧凑体积小网络传输快适合全量复制恢复速度比AOF快很多。当然与AOF相比RDB最重要的优点之一是对性能的影响相对较小。
② 缺点RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化而在数据越来越重要的今天数据的大量丢失很多时候是无法接受的因此AOF持久化成为主流。此外RDB文件需要满足特定格式兼容性差如老版本的Redis不兼容新版本的RDB文件。
③ 对于RDB持久化一方面是bgsave在进行fork操作时Redis主进程会阻塞另一方面子进程向硬盘写数据也会带来IO压力。
2AOF持久化
① 与RDB持久化相对应AOF的优点在于支持秒级持久化、兼容性好缺点是文件大、恢复速度慢、对性能影响大。
② 对于AOF持久化向硬盘写数据的频率大大提高(everysec策略下为秒级)IO压力更大甚至可能造成AOF追加阻塞问题。
方式决定了必然做不到实时持久化而在数据越来越重要的今天数据的大量丢失很多时候是无法接受的因此AOF持久化成为主流。此外RDB文件需要满足特定格式兼容性差如老版本的Redis不兼容新版本的RDB文件。
③ 对于RDB持久化一方面是bgsave在进行fork操作时Redis主进程会阻塞另一方面子进程向硬盘写数据也会带来IO压力。
2AOF持久化
① 与RDB持久化相对应AOF的优点在于支持秒级持久化、兼容性好缺点是文件大、恢复速度慢、对性能影响大。
② 对于AOF持久化向硬盘写数据的频率大大提高(everysec策略下为秒级)IO压力更大甚至可能造成AOF追加阻塞问题。
③ AOF文件的重写与RDB的bgsave类似会有fork时的阻塞和子进程的IO压力问题。相对来说由于AOF向硬盘中写数据的频率更高因此对 Redis主进程性能的影响会更大。