当前位置: 首页 > news >正文

网站色彩学做网站需要准备什么条件

网站色彩学,做网站需要准备什么条件,平面设计师证报名入口,编程培训班网上课程文章目录 CIFAR10数据集介绍1. 数据的下载2.修改模型与前面的参数设置保持一致3. 新建模型4. 从数据集中分批量读取数据5. 定义损失函数6. 定义优化器7. 开始训练8.测试模型 9. 手写体图片的可视化10. 多幅图片的可视化 思考题11. 读取测试集的图片预测值#xff08;神经网络的… 文章目录 CIFAR10数据集介绍1. 数据的下载2.修改模型与前面的参数设置保持一致3. 新建模型4. 从数据集中分批量读取数据5. 定义损失函数6. 定义优化器7. 开始训练8.测试模型 9. 手写体图片的可视化10. 多幅图片的可视化 思考题11. 读取测试集的图片预测值神经网络的输出为1012. 采用pandas可视化数据13. 对预测错误的样本点进行可视化14. 看看错误样本被预测为哪些数据 15.输出错误的模型类别 CIFAR10数据集介绍 CIFAR-10 数据集由10个类别的60000张32x32彩色图像组成每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为五个训练批次 和一个测试批次每个批次有10000张图像。测试批次包含从每个类别中随机选择的1000张图像。训练批次包含随机顺序的剩余图像但一些训练批次 可能包含比另一个类别更多的图像。在它们之间训练批次包含来自每个类的5000张图像。以下是数据集中的类以及每个类中的10张随机图像 因为CIFAR10数据集颜色通道有3个所以卷积层L1的输入通道数量in_channels需要设为3。全连接层fc1的输入维度设为400这与上例设为256有所不同原因是初始输入数据的形状不一样经过卷积池化后输出的数据形状是不一样的。如果是采用动态图开发模型那么有一种便捷的方式查看中间结果的形状即在forward()方法中用print函数把中间结果的形状打印出来。根据中间结果的形状决定接下来各网络层的参数。 1. 数据的下载 import torch import torchvision.transforms as transforms from torchvision.datasets import CIFAR10 train_dataset CIFAR10(root./data/CIFAR10,trainTrue,transformtransforms.ToTensor(),downloadTrue) test_dataset CIFAR10(root./data/CIFAR10, trainFalse,transformtransforms.ToTensor())Files already downloaded and verifiedtrain_dataset[0][0].shapetorch.Size([3, 32, 32])train_dataset[0][1]62.修改模型与前面的参数设置保持一致 from torch import nnclass Lenet5(nn.Module):def __init__(self):super(Lenet5,self).__init__()#1 32-5/(1)28self.featuresnn.Sequential(#定义第一个卷积层nn.Conv2d(in_channels3,out_channels6,kernel_size(5,5),stride1),nn.ReLU(),nn.AvgPool2d(kernel_size2,stride2),#定义第二个卷积层nn.Conv2d(in_channels6,out_channels16,kernel_size(5,5),stride1),nn.ReLU(),nn.MaxPool2d(kernel_size2,stride2),)#定义全连接层self.classfiernn.Sequential(nn.Linear(in_features400,out_features120),nn.ReLU(),nn.Linear(in_features120,out_features84),nn.ReLU(),nn.Linear(in_features84,out_features10), )def forward(self,x):xself.features(x)xtorch.flatten(x,1)resultself.classfier(x)return result 3. 新建模型 modelLenet5() devicetorch.device(cuda:0 if torch.cuda.is_available() else cpu) modelmodel.to(device)4. 从数据集中分批量读取数据 #加载数据集 batch_size32 train_loader torch.utils.data.DataLoader(train_dataset, batch_size, shuffleTrue) test_loader torch.utils.data.DataLoader(test_dataset, batch_size, shuffleFalse) # 类别信息也是需要我们给定的 classes (plane, car, bird, cat,deer, dog, frog, horse, ship, truck)5. 定义损失函数 from torch import optimloss_funnn.CrossEntropyLoss() loss_lst[]6. 定义优化器 optimizeroptim.SGD(paramsmodel.parameters(),lr0.001,momentum0.9)7. 开始训练 import time start_timetime.time() #训练的迭代次数 for epoch in range(10):loss_i0for i,(batch_data,batch_label) in enumerate(train_loader):#清空优化器的梯度optimizer.zero_grad()#模型前向预测predmodel(batch_data)lossloss_fun(pred,batch_label)loss_ilossloss.backward()optimizer.step()if (i1)%2000:print(第%d次训练第%d批次损失为%.2f%(epoch,i,loss_i/200))loss_i0 end_timetime.time() print(共训练了%d 秒%(end_time-start_time))第0次训练第199批次损失为2.30 第0次训练第399批次损失为2.30 第0次训练第599批次损失为2.30 第0次训练第799批次损失为2.30 第0次训练第999批次损失为2.30 第0次训练第1199批次损失为2.30 第0次训练第1399批次损失为2.30 第1次训练第199批次损失为2.30 第1次训练第399批次损失为2.30 第1次训练第599批次损失为2.30 第1次训练第799批次损失为2.30 第1次训练第999批次损失为2.29 第1次训练第1199批次损失为2.27 第1次训练第1399批次损失为2.18 第2次训练第199批次损失为2.07 第2次训练第399批次损失为2.04 第2次训练第599批次损失为2.03 第2次训练第799批次损失为2.00 第2次训练第999批次损失为1.98 第2次训练第1199批次损失为1.96 第2次训练第1399批次损失为1.95 第3次训练第199批次损失为1.89 第3次训练第399批次损失为1.86 第3次训练第599批次损失为1.84 第3次训练第799批次损失为1.80 第3次训练第999批次损失为1.75 第3次训练第1199批次损失为1.71 第3次训练第1399批次损失为1.71 第4次训练第199批次损失为1.66 第4次训练第399批次损失为1.65 第4次训练第599批次损失为1.63 第4次训练第799批次损失为1.61 第4次训练第999批次损失为1.62 第4次训练第1199批次损失为1.60 第4次训练第1399批次损失为1.59 第5次训练第199批次损失为1.56 第5次训练第399批次损失为1.56 第5次训练第599批次损失为1.54 第5次训练第799批次损失为1.55 第5次训练第999批次损失为1.52 第5次训练第1199批次损失为1.52 第5次训练第1399批次损失为1.49 第6次训练第199批次损失为1.50 第6次训练第399批次损失为1.47 第6次训练第599批次损失为1.46 第6次训练第799批次损失为1.47 第6次训练第999批次损失为1.46 第6次训练第1199批次损失为1.43 第6次训练第1399批次损失为1.45 第7次训练第199批次损失为1.42 第7次训练第399批次损失为1.42 第7次训练第599批次损失为1.39 第7次训练第799批次损失为1.39 第7次训练第999批次损失为1.40 第7次训练第1199批次损失为1.40 第7次训练第1399批次损失为1.40 第8次训练第199批次损失为1.36 第8次训练第399批次损失为1.37 第8次训练第599批次损失为1.38 第8次训练第799批次损失为1.37 第8次训练第999批次损失为1.34 第8次训练第1199批次损失为1.37 第8次训练第1399批次损失为1.35 第9次训练第199批次损失为1.31 第9次训练第399批次损失为1.31 第9次训练第599批次损失为1.31 第9次训练第799批次损失为1.31 第9次训练第999批次损失为1.34 第9次训练第1199批次损失为1.32 第9次训练第1399批次损失为1.31 共训练了156 秒8.测试模型 len(test_dataset)10000correct0 for batch_data,batch_label in test_loader:pred_testmodel(batch_data)pred_resulttorch.max(pred_test.data,1)[1]correct(pred_resultbatch_label).sum() print(准确率为:%.2f%%%(correct/len(test_dataset)))准确率为:0.53%9. 手写体图片的可视化 from torchvision import transforms as Timport torchlen(train_dataset)50000train_dataset[0][0].shapetorch.Size([3, 32, 32])import matplotlib.pyplot as plt plt.imshow(train_dataset[0][0][0],cmapgray) plt.axis(off)(-0.5, 31.5, 31.5, -0.5)plt.imshow(train_dataset[0][0][0]) plt.axis(off)(-0.5, 31.5, 31.5, -0.5)10. 多幅图片的可视化 from matplotlib import pyplot as plt plt.figure(figsize(20,15)) cols10 rows10 for i in range(0,rows):for j in range(0,cols):idxji*colsplt.subplot(rows,cols,idx1) plt.imshow(train_dataset[idx][0][0])plt.axis(off)import numpy as np img10 np.stack(list(train_dataset[i][0][0] for i in range(10)), axis1).reshape(32,320) plt.imshow(img10) plt.axis(off)(-0.5, 319.5, 31.5, -0.5)img100 np.stack( tuple( np.stack(tuple( train_dataset[j*10i][0][0] for i in range(10) ), axis1).reshape(32,320) for j in range(10)),axis0).reshape(320,320) plt.imshow(img100) plt.axis(off)(-0.5, 319.5, 319.5, -0.5)思考题 测试集中有哪些识别错误的手写数字图片 汇集整理并分析原因 11. 读取测试集的图片预测值神经网络的输出为10 pre_resulttorch.zeros(len(test_dataset),10) for i in range(len(test_dataset)):pre_result[i,:]model(torch.reshape(test_dataset[i][0],(-1,3,32,32))) pre_result tensor([[-0.4934, -1.0982, 0.4072, ..., -0.4038, -1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, ..., -2.3925, 4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, ..., -2.2767, 3.0923, 2.3740],...,[-1.9551, -3.8085, 1.7917, ..., 2.1104, -2.9573, -1.7387],[ 0.6681, -0.5328, 0.3059, ..., 0.1170, -2.5236, -0.5746],[-0.5194, -2.6185, 1.1929, ..., 3.7749, -2.3134, -1.5123]],grad_fnCopySlices)pre_result.shapetorch.Size([10000, 10])pre_result[:5]tensor([[-0.4934, -1.0982, 0.4072, 1.7331, -0.4456, 1.6433, 0.1721, -0.4038,-1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, -3.2882, -1.6234, -4.4814, -3.1241, -2.3925,4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, -1.0123, -1.7394, -1.6657, -3.2578, -2.2767,3.0923, 2.3740],[ 2.1151, 0.8262, 0.0071, -1.1410, -0.3051, -2.0239, -2.3023, -0.3573,2.9400, 0.5595],[-2.3524, -2.7907, 1.9834, 2.1088, 2.7645, 1.1118, 2.9782, -0.3876,-3.2325, -2.3916]], grad_fnSliceBackward0)#显示这10000张图片的标签 label_10000[test_dataset[i][1] for i in range(10000)] label_10000[3,8,8,0,6,6,1,6,3,1,0,9,5,7,9,8,5,7,8,6,7,0,4,9,5,2,4,0,9,6,6,5,4,5,9,2,4,1,9,5,4,6,5,6,0,9,3,9,7,6,9,8,0,3,8,8,7,7,4,6,7,3,6,3,6,2,1,2,3,7,2,6,8,8,0,2,9,3,3,8,8,1,1,7,2,5,2,7,8,9,0,3,8,6,4,6,6,0,0,7,4,5,6,3,1,1,3,6,8,7,4,0,6,2,1,3,0,4,2,7,8,3,1,2,8,0,8,3,5,2,4,1,8,9,1,2,9,7,2,9,6,5,6,3,8,7,6,2,5,2,8,9,6,0,0,5,2,9,5,4,2,1,6,6,8,4,8,4,5,0,9,9,9,8,9,9,3,7,5,0,0,5,2,2,3,8,6,3,4,0,5,8,0,1,7,2,8,8,7,8,5,1,8,7,1,3,0,5,7,9,7,4,5,9,8,0,7,9,8,2,7,6,9,4,3,9,6,4,7,6,5,1,5,8,8,0,4,0,5,5,1,1,8,9,0,3,1,9,2,2,5,3,9,9,4,0,3,0,0,9,8,1,5,7,0,8,2,4,7,0,2,3,6,3,8,5,0,3,4,3,9,0,6,1,0,9,1,0,7,9,1,2,6,9,3,4,6,0,0,6,6,6,3,2,6,1,8,2,1,6,8,6,8,0,4,0,7,7,5,5,3,5,2,3,4,1,7,5,4,6,1,9,3,6,6,9,3,8,0,7,2,6,2,5,8,5,4,6,8,9,9,1,0,2,2,7,3,2,8,0,9,5,8,1,9,4,1,3,8,1,4,7,9,4,2,7,0,7,0,6,6,9,0,9,2,8,7,2,2,5,1,2,6,2,9,6,2,3,0,3,9,8,7,8,8,4,0,1,8,2,7,9,3,6,1,9,0,7,3,7,4,5,0,0,2,9,3,4,0,6,2,5,3,7,3,7,2,5,3,1,1,4,9,9,5,7,5,0,2,2,2,9,7,3,9,4,3,5,4,6,5,6,1,4,3,4,4,3,7,8,3,7,8,0,5,7,6,0,5,4,8,6,8,5,5,9,9,9,5,0,1,0,8,1,1,8,0,2,2,0,4,6,5,4,9,4,7,9,9,4,5,6,6,1,5,3,8,9,5,8,5,7,0,7,0,5,0,0,4,6,9,0,9,5,6,6,6,2,9,0,1,7,6,7,5,9,1,6,2,5,5,5,8,5,9,4,6,4,3,2,0,7,6,2,2,3,9,7,9,2,6,7,1,3,6,6,8,9,7,5,4,0,8,4,0,9,3,4,8,9,6,9,2,6,1,4,7,3,5,3,8,5,0,2,1,6,4,3,3,9,6,9,8,8,5,8,6,6,2,1,7,7,1,2,7,9,9,4,4,1,2,5,6,8,7,6,8,3,0,5,5,3,0,7,9,1,3,4,4,5,3,9,5,6,9,2,1,1,4,1,9,4,7,6,3,8,9,0,1,3,6,3,6,3,2,0,3,1,0,5,9,6,4,8,9,6,9,6,3,0,3,2,2,7,8,3,8,2,7,5,7,2,4,8,7,4,2,9,8,8,6,8,8,7,4,3,3,8,4,9,4,8,8,1,8,2,1,3,6,5,4,2,7,9,9,4,1,4,1,3,2,7,0,7,9,7,6,6,2,5,9,2,9,1,2,2,6,8,2,1,3,6,6,0,1,2,7,0,5,4,6,1,6,4,0,2,2,6,0,5,9,1,7,6,7,0,3,9,6,8,3,0,3,4,7,7,1,4,7,2,7,1,4,7,4,4,8,4,7,7,5,3,7,2,0,8,9,5,8,3,6,2,0,8,7,3,7,6,5,3,1,3,2,2,5,4,1,2,9,2,7,0,7,2,1,3,2,0,2,4,7,9,8,9,0,7,7,0,7,8,4,6,3,3,0,1,3,7,0,1,3,1,4,2,3,8,4,2,3,7,8,4,3,0,9,0,0,1,0,4,4,6,7,6,1,1,3,7,3,5,2,6,6,5,8,7,1,6,8,8,5,3,0,4,0,1,3,8,8,0,6,9,9,9,5,5,8,6,0,0,4,2,3,2,7,2,2,5,9,8,9,1,7,4,0,3,0,1,3,8,3,9,6,1,4,7,0,3,7,8,9,1,1,6,6,6,6,9,1,9,9,4,2,1,7,0,6,8,1,9,2,9,0,4,7,8,3,1,2,0,1,5,8,4,6,3,8,1,3,8,...]import numpy pre_10000pre_result.detach() pre_10000tensor([[-0.4934, -1.0982, 0.4072, ..., -0.4038, -1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, ..., -2.3925, 4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, ..., -2.2767, 3.0923, 2.3740],...,[-1.9551, -3.8085, 1.7917, ..., 2.1104, -2.9573, -1.7387],[ 0.6681, -0.5328, 0.3059, ..., 0.1170, -2.5236, -0.5746],[-0.5194, -2.6185, 1.1929, ..., 3.7749, -2.3134, -1.5123]])pre_10000numpy.array(pre_10000) pre_10000array([[-0.49338394, -1.098238 , 0.40724754, ..., -0.40375623,-1.165497 , -0.820113 ],[ 4.0153656 , 4.4736323 , -0.29209492, ..., -2.392501 ,4.317573 , 4.190993 ],[ 1.3858219 , 3.2021556 , -0.70040375, ..., -2.2767155 ,3.092283 , 2.373978 ],...,[-1.9550545 , -3.808494 , 1.7917161 , ..., 2.110389 ,-2.9572597 , -1.7386926 ],[ 0.66809845, -0.5327946 , 0.30590305, ..., 0.11701592,-2.5236375 , -0.5746133 ],[-0.51935434, -2.6184506 , 1.1929085 , ..., 3.7748828 ,-2.3134274 , -1.5123445 ]], dtypefloat32)12. 采用pandas可视化数据 import pandas as pd tablepd.DataFrame(zip(pre_10000,label_10000)) table010[-0.49338394, -1.098238, 0.40724754, 1.7330961...31[4.0153656, 4.4736323, -0.29209492, -3.2882178...82[1.3858219, 3.2021556, -0.70040375, -1.0123051...83[2.11508, 0.82618773, 0.007076204, -1.1409527,...04[-2.352432, -2.7906854, 1.9833877, 2.1087575, ...6.........9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...89996[-2.7151718, -4.1596007, 1.2393914, 2.8491826,...39997[-1.9550545, -3.808494, 1.7917161, 2.6365147, ...59998[0.66809845, -0.5327946, 0.30590305, -0.182045...19999[-0.51935434, -2.6184506, 1.1929085, 0.1288419...7 10000 rows × 2 columns table[0].valuesarray([array([-0.49338394, -1.098238 , 0.40724754, 1.7330961 , -0.4455951 ,1.6433077 , 0.1720748 , -0.40375623, -1.165497 , -0.820113 ],dtypefloat32) ,array([ 4.0153656 , 4.4736323 , -0.29209492, -3.2882178 , -1.6234205 ,-4.481386 , -3.1240807 , -2.392501 , 4.317573 , 4.190993 ],dtypefloat32) ,array([ 1.3858219 , 3.2021556 , -0.70040375, -1.0123051 , -1.7393746 ,-1.6656632 , -3.2578242 , -2.2767155 , 3.092283 , 2.373978 ],dtypefloat32) ,...,array([-1.9550545 , -3.808494 , 1.7917161 , 2.6365147 , 0.37311587,3.545672 , -0.43889195, 2.110389 , -2.9572597 , -1.7386926 ],dtypefloat32) ,array([ 0.66809845, -0.5327946 , 0.30590305, -0.18204585, 2.0045712 ,0.47369143, -0.3122899 , 0.11701592, -2.5236375 , -0.5746133 ],dtypefloat32) ,array([-0.51935434, -2.6184506 , 1.1929085 , 0.1288419 , 1.8770852 ,0.4296908 , -0.22015049, 3.7748828 , -2.3134274 , -1.5123445 ],dtypefloat32) ],dtypeobject)table[pred][np.argmax(table[0][i]) for i in range(table.shape[0])] table01pred0[-0.49338394, -1.098238, 0.40724754, 1.7330961...331[4.0153656, 4.4736323, -0.29209492, -3.2882178...812[1.3858219, 3.2021556, -0.70040375, -1.0123051...813[2.11508, 0.82618773, 0.007076204, -1.1409527,...084[-2.352432, -2.7906854, 1.9833877, 2.1087575, ...66............9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...859996[-2.7151718, -4.1596007, 1.2393914, 2.8491826,...339997[-1.9550545, -3.808494, 1.7917161, 2.6365147, ...559998[0.66809845, -0.5327946, 0.30590305, -0.182045...149999[-0.51935434, -2.6184506, 1.1929085, 0.1288419...77 10000 rows × 3 columns 13. 对预测错误的样本点进行可视化 mismatchtable[table[1]!table[pred]]mismatch01pred1[4.0153656, 4.4736323, -0.29209492, -3.2882178...812[1.3858219, 3.2021556, -0.70040375, -1.0123051...813[2.11508, 0.82618773, 0.007076204, -1.1409527,...088[0.02641207, -3.6653092, 2.294829, 2.2884543, ...3512[-1.4556388, -1.7955011, -0.6100754, 1.169481,...56............9989[-0.2553262, -2.8777533, 3.4579017, 0.3079242,...249993[-0.077826336, -3.14616, 0.8994149, 3.5604722,...539994[-1.2543154, -2.4472265, 0.6754027, 2.0582433,...369995[-0.55809855, -4.3891077, -0.3040389, 3.001731...859998[0.66809845, -0.5327946, 0.30590305, -0.182045...14 4657 rows × 3 columns from matplotlib import pyplot as plt plt.scatter(mismatch[1],mismatch[pred])matplotlib.collections.PathCollection at 0x1b3a92ef91014. 看看错误样本被预测为哪些数据 mismatch[mismatch[1]9].sort_values(pred).indexInt64Index([2129, 1465, 2907, 787, 2902, 2307, 4588, 5737, 8276, 8225,...7635, 7553, 7526, 3999, 1626, 1639, 4193, 7198, 3957, 3344],dtypeint64, length396)idx_lstmismatch[mismatch[1]9].sort_values(pred).index.values idx_lst,len(idx_lst)(array([2129, 1465, 2907, 787, 2902, 2307, 4588, 5737, 8276, 8225, 8148,4836, 1155, 7218, 8034, 7412, 5069, 1629, 5094, 5109, 7685, 5397,1427, 5308, 8727, 2960, 2491, 6795, 1997, 6686, 9449, 6545, 8985,9401, 3564, 6034, 383, 9583, 9673, 507, 3288, 6868, 9133, 9085,577, 4261, 6974, 411, 6290, 5416, 5350, 5950, 5455, 5498, 6143,5964, 5864, 5877, 6188, 5939, 14, 5300, 3501, 3676, 3770, 3800,3850, 3893, 3902, 4233, 4252, 4253, 4276, 5335, 4297, 4418, 4445,4536, 4681, 6381, 4929, 4945, 5067, 5087, 5166, 5192, 4364, 4928,7024, 6542, 8144, 8312, 8385, 8406, 8453, 8465, 8521, 8585, 8673,8763, 8946, 9067, 9069, 9199, 9209, 9217, 9280, 9403, 9463, 9518,9692, 9743, 9871, 9875, 9881, 8066, 6509, 8057, 7826, 6741, 6811,6814, 6840, 6983, 7007, 3492, 7028, 7075, 7121, 7232, 7270, 7424,7431, 7444, 7492, 7499, 7501, 7578, 7639, 7729, 7767, 7792, 7818,7824, 7942, 3459, 4872, 1834, 1487, 1668, 1727, 1732, 1734, 1808,1814, 1815, 1831, 1927, 2111, 2126, 2190, 2246, 2290, 2433, 2596,2700, 2714, 1439, 1424, 1376, 1359, 28, 151, 172, 253, 259,335, 350, 591, 625, 2754, 734, 940, 951, 970, 1066, 1136,1177, 1199, 1222, 1231, 853, 2789, 9958, 2946, 3314, 3307, 2876,3208, 3166, 2944, 2817, 2305, 7522, 7155, 7220, 4590, 2899, 2446,2186, 7799, 9492, 3163, 4449, 2027, 2387, 1064, 3557, 2177, 654,9791, 2670, 2514, 2495, 3450, 8972, 3210, 3755, 2756, 7967, 3970,4550, 6017, 938, 744, 6951, 3397, 4852, 3133, 7931, 707, 3312,7470, 6871, 8292, 7100, 9529, 9100, 3853, 9060, 9732, 2521, 3789,2974, 5311, 3218, 5736, 3055, 7076, 1220, 9147, 1344, 532, 8218,3569, 1008, 8475, 8877, 1582, 8936, 4758, 1837, 9517, 252, 5832,1916, 6369, 4979, 9324, 6218, 9777, 7923, 4521, 2868, 213, 8083,5952, 5579, 4508, 5488, 2460, 5332, 5180, 8323, 8345, 3776, 2568,5151, 4570, 2854, 8488, 4874, 680, 2810, 1285, 6136, 3339, 9143,6852, 1906, 7067, 7073, 2975, 1924, 6804, 6755, 9299, 2019, 9445,9560, 360, 1601, 7297, 9122, 6377, 9214, 6167, 3980, 394, 7491,7581, 9349, 8953, 222, 139, 530, 3577, 9868, 247, 9099, 9026,209, 538, 3229, 9258, 585, 9204, 9643, 1492, 3609, 6570, 6561,6469, 6435, 6419, 2155, 6275, 4481, 2202, 1987, 2271, 2355, 2366,2432, 5400, 2497, 2727, 4931, 4619, 9884, 5902, 8796, 6848, 6960,8575, 8413, 981, 8272, 8145, 3172, 1221, 3168, 1256, 1889, 1291,3964, 7635, 7553, 7526, 3999, 1626, 1639, 4193, 7198, 3957, 3344],dtypeint64),396)import numpy as np imgnp.stack(list(test_dataset[idx_lst[i]][0][0] for i in range(5)),axis1).reshape(32,32*5) plt.imshow(img) plt.axis(off)(-0.5, 159.5, 31.5, -0.5)#显示4行 import numpy as np img20np.stack(tuple(np.stack(tuple(test_dataset[idx_lst[ij*5]][0][0] for i in range(5)),axis1).reshape(32,32*5) for j in range(4)),axis0).reshape(32*4,32*5) plt.imshow(img20) plt.axis(off)(-0.5, 159.5, 127.5, -0.5)15.输出错误的模型类别 idx_lstmismatch[mismatch[1]9].index.values table.iloc[idx_lst[:], 2].valuesarray([1, 1, 8, 1, 1, 8, 7, 8, 8, 6, 1, 1, 1, 1, 7, 0, 7, 0, 0, 8, 6, 8,0, 8, 1, 1, 3, 7, 5, 1, 4, 0, 1, 4, 1, 1, 1, 8, 6, 3, 1, 1, 0, 1,1, 6, 8, 1, 1, 8, 7, 8, 6, 1, 1, 1, 0, 1, 0, 1, 8, 6, 7, 8, 0, 8,1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 8, 7, 6, 7, 1, 8, 0, 7, 3, 1, 1, 0,8, 3, 3, 1, 8, 1, 8, 1, 2, 0, 8, 8, 3, 8, 1, 3, 7, 0, 3, 8, 3, 5,7, 1, 3, 1, 1, 8, 1, 3, 1, 7, 1, 7, 7, 1, 3, 0, 0, 1, 1, 0, 5, 7,6, 4, 3, 1, 8, 8, 1, 3, 5, 8, 0, 1, 5, 1, 7, 8, 4, 3, 1, 1, 1, 3,0, 6, 8, 8, 1, 3, 1, 7, 5, 1, 1, 5, 1, 1, 8, 8, 4, 7, 8, 8, 1, 1,1, 0, 1, 1, 1, 1, 1, 3, 8, 7, 7, 1, 4, 7, 0, 2, 8, 1, 6, 0, 4, 1,7, 1, 1, 8, 1, 6, 1, 0, 1, 0, 0, 7, 1, 7, 1, 1, 0, 5, 7, 1, 1, 0,8, 1, 1, 7, 1, 7, 5, 0, 6, 1, 1, 8, 1, 1, 7, 1, 4, 0, 7, 1, 7, 1,6, 8, 1, 6, 7, 1, 8, 8, 8, 1, 1, 0, 8, 8, 0, 1, 7, 0, 7, 1, 1, 1,8, 7, 0, 5, 4, 8, 0, 1, 1, 1, 1, 7, 7, 1, 6, 5, 1, 2, 8, 0, 2, 1,1, 7, 0, 1, 1, 1, 5, 7, 1, 1, 1, 2, 8, 8, 1, 7, 8, 1, 0, 1, 1, 1,3, 1, 1, 1, 7, 4, 1, 4, 0, 1, 1, 7, 1, 8, 0, 6, 0, 8, 0, 5, 1, 7,7, 1, 1, 8, 1, 1, 6, 7, 1, 8, 1, 1, 0, 1, 8, 6, 6, 1, 8, 3, 0, 8,5, 1, 1, 0, 8, 5, 7, 0, 7, 6, 1, 8, 1, 7, 1, 8, 1, 7, 6, 8, 0, 1,7, 0, 1, 3, 6, 1, 5, 7, 0, 8, 0, 1, 5, 1, 6, 3, 8, 1, 1, 1, 8, 1],dtypeint64)arr2table.iloc[idx_lst[:], 2].values print(错误模型共 str(len(arr2)) 个) for i in range(33):for j in range(12):print(classes[arr2[ji*12]],end )print()错误模型共396个 car car ship car car ship horse ship ship frog car car car car horse plane horse plane plane ship frog ship plane ship car car cat horse dog car deer plane car deer car car car ship frog cat car car plane car car frog ship car car ship horse ship frog car car car plane car plane car ship frog horse ship plane ship car car car car car car car car car frog ship horse frog horse car ship plane horse cat car car plane ship cat cat car ship car ship car bird plane ship ship cat ship car cat horse plane cat ship cat dog horse car cat car car ship car cat car horse car horse horse car cat plane plane car car plane dog horse frog deer cat car ship ship car cat dog ship plane car dog car horse ship deer cat car car car cat plane frog ship ship car cat car horse dog car car dog car car ship ship deer horse ship ship car car car plane car car car car car cat ship horse horse car deer horse plane bird ship car frog plane deer car horse car car ship car frog car plane car plane plane horse car horse car car plane dog horse car car plane ship car car horse car horse dog plane frog car car ship car car horse car deer plane horse car horse car frog ship car frog horse car ship ship ship car car plane ship ship plane car horse plane horse car car car ship horse plane dog deer ship plane car car car car horse horse car frog dog car bird ship plane bird car car horse plane car car car dog horse car car car bird ship ship car horse ship car plane car car car cat car car car horse deer car deer plane car car horse car ship plane frog plane ship plane dog car horse horse car car ship car car frog horse car ship car car plane car ship frog frog car ship cat plane ship dog car car plane ship dog horse plane horse frog car ship car horse car ship car horse frog ship plane car horse plane car cat frog car dog horse plane ship plane car dog car frog cat ship car car car ship car
http://www.dnsts.com.cn/news/139264.html

相关文章:

  • .net cms网站管理系统建站优化信息推广
  • 晋中推广型网站建设北京网站优化网
  • 西湖专业网站设计公司后缀int网站
  • 南昌企业建站程序深圳做企业网站哪家好
  • 福州专业网站制作公司yoast seo教程
  • 中小开网站服务器租赁合同范本
  • 怎么在公众号做影视网站贵阳专业做网站公司有哪些
  • 网站平台延展性营销型企业网站源码
  • 做外贸电商网站有哪个教您如何申请企业邮箱
  • 深圳百度cpu优化软件
  • 网站建设的计划书三字顺口名字公司
  • 物流网站建设与管理网站商务通登陆不上
  • 免费企业网站建设单位哈尔滨模板建站多少钱
  • 视觉中国网站wordpress手机文章
  • 做网站生意旁学做投资网站
  • 珠海正规网站制作合作哪里app开发公司好
  • 国内响应式网站案例google帐户登录网站如何做的
  • 芙蓉区乡建设局网站婚纱照官网
  • 网站建设 的销售图片网站建设淘宝好评
  • 新建网站怎样绑定域名旅游网站建设注册
  • 泰州市靖靖建设局网站中国农技推广网
  • 广州大型网站建设公司排名营业执照注销
  • 做网站必备广州网站建设app开发
  • 南宁制作网站公司h5制作网站 有哪些
  • 仿历史网站模板wordpress集成当面付
  • 南京英文网站制作钢结构工程外包项目网
  • 如何在iis下建设网站网站建设技术要求标准
  • win2003服务器网站管理工具网站做百度推广的要求
  • 营销网站型建设多少钱南阳市建网站公
  • 新手建设什么网站好贵阳网站建设蜜蜂