当前位置: 首页 > news >正文

黑龙江交通系统网站建设上海企业公示

黑龙江交通系统网站建设,上海企业公示,wordpress插件下载失败,做微网站价格分类目录#xff1a;《自然语言处理从入门到应用》总目录 使用SQLite存储的实体记忆 我们将创建一个简单的对话链#xff0c;该链使用ConversationEntityMemory#xff0c;并使用SqliteEntityStore作为后端存储。使用EntitySqliteStore作为记忆entity_store属性上的参数《自然语言处理从入门到应用》总目录 使用SQLite存储的实体记忆 我们将创建一个简单的对话链该链使用ConversationEntityMemory并使用SqliteEntityStore作为后端存储。使用EntitySqliteStore作为记忆entity_store属性上的参数 from langchain.chains import ConversationChain from langchain.llms import OpenAI from langchain.memory import ConversationEntityMemory from langchain.memory.entity import SQLiteEntityStore from langchain.memory.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE entity_storeSQLiteEntityStore() llm OpenAI(temperature0) memory ConversationEntityMemory(llmllm, entity_storeentity_store) conversation ConversationChain(llmllm, promptENTITY_MEMORY_CONVERSATION_TEMPLATE,memorymemory,verboseTrue, ) conversation.run(Deven Sam are working on a hackathon project)日志输出 Entering new ConversationChain chain... Prompt after formatting: You are an assistant to a human, powered by a large language model trained by OpenAI.You are designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, you are able to generate human-like text based on the input you receive, allowing you to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.You are constantly learning and improving, and your capabilities are constantly evolving. You are able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. You have access to some personalized information provided by the human in the Context section below. Additionally, you are able to generate your own text based on the input you receive, allowing you to engage in discussions and provide explanations and descriptions on a wide range of topics.Overall, you are a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether the human needs help with a specific question or just wants to have a conversation about a particular topic, you are here to assist.Context: {Deven: Deven is working on a hackathon project with Sam., Sam: Sam is working on a hackathon project with Deven.}Current conversation:Last line: Human: Deven Sam are working on a hackathon project You: Finished chain.输出 That sounds like a great project! What kind of project are they working on?输入 conversation.memory.entity_store.get(Deven)输出 Deven is working on a hackathon project with Sam.输入 conversation.memory.entity_store.get(Sam)输出 Sam is working on a hackathon project with Deven.Zep聊天消息历史记录长期存储库 本节介绍了如何使用Zep长期存储库作为聊天机器人的内存来存储聊天消息历史记录。Zep 是一个存储、摘要、嵌入、索引和丰富对话式人工智能聊天历史记录的工具并通过简单、低延迟的API进行访问。其主要特性有 长期存储持久性无论我们的摘要策略如何都可以访问历史消息。根据可配置的消息窗口自动摘要内存消息。存储一系列摘要为将来的摘要策略提供灵活性。在记忆中进行向量搜索消息在创建时自动嵌入。自动计数记忆和摘要的令牌允许更精细地控制提示组合。提供Python和JavaScript SDK。 from langchain.memory.chat_message_histories import ZepChatMessageHistory from langchain.memory import ConversationBufferMemory from langchain import OpenAI from langchain.schema import HumanMessage, AIMessage from langchain.tools import DuckDuckGoSearchRun from langchain.agents import initialize_agent, AgentType from uuid import uuid4# Set this to your Zep server URL ZEP_API_URL http://localhost:8000session_id str(uuid4()) # This is a unique identifier for the user# Load your OpenAI key from a .env file from dotenv import load_dotenvload_dotenv()输出 True初始化Zep Chat Message History类并初始化代理 ddg DuckDuckGoSearchRun() tools [ddg] # Set up Zep Chat History zep_chat_history ZepChatMessageHistory(session_idsession_id,urlZEP_API_URL, ) # Use a standard ConversationBufferMemory to encapsulate the Zep chat history memory ConversationBufferMemory(memory_keychat_history, chat_memoryzep_chat_history )# Initialize the agent llm OpenAI(temperature0) agent_chain initialize_agent(tools,llm,agentAgentType.CONVERSATIONAL_REACT_DESCRIPTION,verboseTrue,memorymemory, )# Add some history data # Preload some messages into the memory. The default message window is 12 messages. We want to push beyond this to demonstrate auto-summarization. test_history [{role: human, content: Who was Octavia Butler?},{role: ai,content: (Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American science fiction author.),},{role: human, content: Which books of hers were made into movies?},{role: ai,content: (The most well-known adaptation of Octavia Butlers work is the FX series Kindred, based on her novel of the same name.),},{role: human, content: Who were her contemporaries?},{role: ai,content: (Octavia Butlers contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.),},{role: human, content: What awards did she win?},{role: ai,content: (Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur Fellowship.),},{role: human,content: Which other women sci-fi writers might I want to read?,},{role: ai,content: You might want to read Ursula K. Le Guin or Joanna Russ.,},{role: human,content: (Write a short synopsis of Butlers book, Parable of the Sower. What is it about?),},{role: ai,content: (Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.),}, ]for msg in test_history:zep_chat_history.append(HumanMessage(contentmsg[content])if msg[role] humanelse AIMessage(contentmsg[content]))运行代理 这样做将自动将输入和回复添加到Zep内存中 agent_chain.run(inputWWhat is the books relevance to the challenges facing contemporary society? )日志输出 Entering new AgentExecutor chain... Thought: Do I need to use a tool? No AI: Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them. Finished chain.输出 Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them.检查Zep内存 注意到摘要Summary以及历史记录已经通过令牌计数、UUID和时间戳进行了丰富而摘要Summary倾向于最近的消息。 def print_messages(messages):for m in messages:print(m.to_dict())print(zep_chat_history.zep_summary) print(\n) print_messages(zep_chat_history.zep_messages)输出 The conversation is about Octavia Butler. The AI describes her as an American science fiction author and mentions the FX series Kindred as a well-known adaptation of her work. The human then asks about her contemporaries, and the AI lists Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.{role: human, content: What awards did she win?, uuid: 9fa75c3c-edae-41e3-b9bc-9fcf16b523c9, created_at: 2023-05-25T15:09:41.91662Z, token_count: 8} {role: ai, content: Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur Fellowship., uuid: def4636c-32cb-49ed-b671-32035a034712, created_at: 2023-05-25T15:09:41.919874Z, token_count: 21} {role: human, content: Which other women sci-fi writers might I want to read?, uuid: 6e87bd4a-bc23-451e-ae36-05a140415270, created_at: 2023-05-25T15:09:41.923771Z, token_count: 14} {role: ai, content: You might want to read Ursula K. Le Guin or Joanna Russ., uuid: f65d8dde-9ee8-4983-9da6-ba789b7e8aa4, created_at: 2023-05-25T15:09:41.935254Z, token_count: 18} {role: human, content: Write a short synopsis of Butlers book, Parable of the Sower. What is it about?, uuid: 5678d056-7f05-4e70-b8e5-f85efa56db01, created_at: 2023-05-25T15:09:41.938974Z, token_count: 23} {role: ai, content: Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence., uuid: 50d64946-9239-4327-83e6-71dcbdd16198, created_at: 2023-05-25T15:09:41.957437Z, token_count: 56} {role: human, content: WWhat is the books relevance to the challenges facing contemporary society?, uuid: a39cfc07-8858-480a-9026-fc47a8ef7001, created_at: 2023-05-25T15:09:50.469533Z, token_count: 16} {role: ai, content: Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them., uuid: a4ecf0fe-fdd0-4aad-b72b-efde2e6830cc, created_at: 2023-05-25T15:09:50.473793Z, token_count: 62}在Zep内存上进行矢量搜索 Zep提供对历史对话内存的本机矢量搜索功能其嵌入是自动完成的 search_results zep_chat_history.search(who are some famous women sci-fi authors?) for r in search_results:print(r.message, r.dist)输出 {uuid: 6e87bd4a-bc23-451e-ae36-05a140415270, created_at: 2023-05-25T15:09:41.923771Z, role: human, content: Which other women sci-fi writers might I want to read?, token_count: 14} 0.9118298949424545{uuid: f65d8dde-9ee8-4983-9da6-ba789b7e8aa4, created_at: 2023-05-25T15:09:41.935254Z, role: ai, content: You might want to read Ursula K. Le Guin or Joanna Russ., token_count: 18} 0.8533024416448016{uuid: 52cfe3e8-b800-4dd8-a7dd-8e9e4764dfc8, created_at: 2023-05-25T15:09:41.913856Z, role: ai, content: Octavia Butlers contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ., token_count: 27} 0.852352466457884{uuid: d40da612-0867-4a43-92ec-778b86490a39, created_at: 2023-05-25T15:09:41.858543Z, role: human, content: Who was Octavia Butler?, token_count: 8} 0.8235468913583194{uuid: 4fcfbce4-7bfa-44bd-879a-8cbf265bdcf9, created_at: 2023-05-25T15:09:41.893848Z, role: ai, content: Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American science fiction author., token_count: 31} 0.8204317130595353{uuid: def4636c-32cb-49ed-b671-32035a034712, created_at: 2023-05-25T15:09:41.919874Z, role: ai, content: Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur Fellowship., token_count: 21} 0.8196714827228725{uuid: 862107de-8f6f-43c0-91fa-4441f01b2b3a, created_at: 2023-05-25T15:09:41.898149Z, role: human, content: Which books of hers were made into movies?, token_count: 11} 0.7954322970428519{uuid: 97164506-90fe-4c71-9539-69ebcd1d90a2, created_at: 2023-05-25T15:09:41.90887Z, role: human, content: Who were her contemporaries?, token_count: 8} 0.7942531405021976{uuid: 50d64946-9239-4327-83e6-71dcbdd16198, created_at: 2023-05-25T15:09:41.957437Z, role: ai, content: Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence., token_count: 56} 0.78144769172694{uuid: c460ffd4-0715-4c69-b793-1092054973e6, created_at: 2023-05-25T15:09:41.903082Z, role: ai, content: The most well-known adaptation of Octavia Butlers work is the FX series Kindred, based on her novel of the same name., token_count: 29} 0.7811962820699464Motörhead Memory Motörhead是一个用Rust实现的内存服务器。它能自动在后台处理增量摘要并支持无状态应用程序。我们可以参考Motörhead上的说明来在本地运行服务器。 from langchain.memory.motorhead_memory import MotorheadMemory from langchain import OpenAI, LLMChain, PromptTemplatetemplate You are a chatbot having a conversation with a human.{chat_history} Human: {human_input} AI:prompt PromptTemplate(input_variables[chat_history, human_input], templatetemplate ) memory MotorheadMemory(session_idtesting-1,urlhttp://localhost:8080,memory_keychat_history )await memory.init(); # loads previous state from Motörhead llm_chain LLMChain(llmOpenAI(), promptprompt, verboseTrue, memorymemory, )llm_chain.run(hi im bob)日志输出 Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human.Human: hi im bob AI: Finished chain.Hi Bob, nice to meet you! How are you doing today? llm_chain.run(whats my name?)Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human.Human: hi im bob AI: Hi Bob, nice to meet you! How are you doing today? Human: whats my name? AI: Finished chain.输出 You said your name is Bob. Is that correct? llm_chain.run(whats for dinner?)日志输出 Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human.Human: hi im bob AI: Hi Bob, nice to meet you! How are you doing today? Human: whats my name? AI: You said your name is Bob. Is that correct? Human: whats for dinner? AI: Finished chain.输出 Im sorry, Im not sure what youre asking. Could you please rephrase your question?我们还可以通过在Metal上创建一个账户来获取您的api_key和client_id。 from langchain.memory.motorhead_memory import MotorheadMemory from langchain import OpenAI, LLMChain, PromptTemplatetemplate You are a chatbot having a conversation with a human.{chat_history} Human: {human_input} AI:prompt PromptTemplate(input_variables[chat_history, human_input], templatetemplate ) memory MotorheadMemory(api_keyYOUR_API_KEY,client_idYOUR_CLIENT_IDsession_idtesting-1,memory_keychat_history )await memory.init(); # loads previous state from Motörhead llm_chain LLMChain(llmOpenAI(), promptprompt, verboseTrue, memorymemory, )llm_chain.run(hi im bob)日志输出 Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human.Human: hi im bob AI: Finished chain. llm_chain.run(whats my name?)Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human.Human: hi im bob AI: Hi Bob, nice to meet you! How are you doing today? Human: whats my name? AI: Finished chain.输出 You said your name is Bob. Is that correct?输入 llm_chain.run(whats for dinner?)日志输出 Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human.Human: hi im bob AI: Hi Bob, nice to meet you! How are you doing today? Human: whats my name? AI: You said your name is Bob. Is that correct? Human: whats for dinner? AI: Finished chain.输出 Im sorry, Im not sure what youre asking. Could you please rephrase your question?在同一个链中使用多个记忆类 在同一个链中使用多个记忆类也是可能的。要组合多个记忆类我们可以初始化CombinedMemory类然后使用它 from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory, CombinedMemory, ConversationSummaryMemoryconv_memory ConversationBufferMemory(memory_keychat_history_lines,input_keyinput )summary_memory ConversationSummaryMemory(llmOpenAI(), input_keyinput) # Combined memory CombinedMemory(memories[conv_memory, summary_memory]) _DEFAULT_TEMPLATE The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Summary of conversation: {history} Current conversation: {chat_history_lines} Human: {input} AI: PROMPT PromptTemplate(input_variables[history, input, chat_history_lines], template_DEFAULT_TEMPLATE ) llm OpenAI(temperature0) conversation ConversationChain(llmllm, verboseTrue, memorymemory,promptPROMPT ) conversation.run(Hi!)日志输出 Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Summary of conversation:Current conversation:Human: Hi! AI: Finished chain.输出 Hi there! How can I help you?输入 conversation.run(Can you tell me a joke?)日志输出 Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Summary of conversation:The human greets the AI, to which the AI responds with a polite greeting and an offer to help. Current conversation: Human: Hi! AI: Hi there! How can I help you? Human: Can you tell me a joke? AI: Finished chain.输出 Sure! What did the fish say when it hit the wall?\nHuman: I don\t know.\nAI: Dam!参考文献 [1] LangChain官方网站https://www.langchain.com/ [2] LangChain ️ 中文网跟着LangChain一起学LLM/GPT开发https://www.langchain.com.cn/ [3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架http://www.cnlangchain.com/
http://www.dnsts.com.cn/news/57638.html

相关文章:

  • 网站百度关键词seo排名优化关键词广告
  • 局域网站点建设方案付费推广网站
  • 宁波网站推广怎么做wordpress流动公告
  • 牡丹江做网站建设电子商务网站建设实验报告
  • 温岭做网站的公司有哪些wordpress科技企业主题
  • 专业家电维修网站建设优化排名案例
  • 网站上常用字体wordpress开发文档
  • 做网站英文编辑有前途吗网站缩略图尺寸
  • 新浪云服务器做网站国外有网站备案制度吗
  • 普通网站 手机网站微信app下载安装官方版
  • 做木皮的网站宿迁建设局质安站网站
  • 响应式网站适合用什么框架做wordpress 批量替换
  • 拖拽做网站wordpress cpu 100%
  • 网站建成之后应该怎么做石家庄网站开发工程师招聘网
  • 仿牛商网营销型网站企业号怎么注册
  • 织梦网站被黑公司搭建一个网站需要多少钱
  • 设计师必备网站网址大全12345
  • 用电脑建设个人网站 并用手机访问手机兼职
  • 青海省建设局网站音乐外链生成网站怎么做
  • 网站一般用什么免费字体上海包装设计公司有哪些
  • 网站开发技术指标与参数成都微信公众号定制
  • 电子商务网站建设的期中考试国内知名网站
  • 内贸网站有多少少儿编程
  • 网站开发网站维护这行业待遇怎么样羽毛球赛事直播平台
  • 云南住房与建设厅网站苏州建站公司精选苏州聚尚网络
  • 爱站网反链查询柳州网站建设哪家好
  • 网站开发使用哪些开发语言wordpress获取标签
  • 禹州市城乡建设局网站wordpress动漫网站模板
  • 模板网站可以做推广吗公共交通公司网站建设方案
  • 上海网站建设推荐网站的代码在哪里设置