当前位置: 首页 > news >正文

jsp网站开发文献网站推广网站制作网站建设公司

jsp网站开发文献,网站推广网站制作网站建设公司,网站制作的前期主要是做好什么工作,网站建设深圳亿联时代关于 本实验采用DEAP情绪数据集进行数据分类任务。使用了三种典型的深度学习网络#xff1a;2D 卷积神经网络#xff1b;1D卷积神经网络GRU#xff1b; LSTM网络。 工具 数据集 DEAP数据 图片来源#xff1a; DEAP: A Dataset for Emotion Analysis using Physiological…关于 本实验采用DEAP情绪数据集进行数据分类任务。使用了三种典型的深度学习网络2D 卷积神经网络1D卷积神经网络GRU LSTM网络。 工具 数据集 DEAP数据 图片来源 DEAP: A Dataset for Emotion Analysis using Physiological and Audiovisual Signals 方法实现 2D-CNN网络 加载必要库函数 import pandas as pd import keras.backend as K import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense from keras.models import Sequential from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from tensorflow.keras.utils import to_categorical from keras.layers import Flatten from keras.layers import Dense import numpy as np import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D from keras import backend as K from keras.models import Model import timeit from keras.models import Sequential from keras.layers.core import Flatten, Dense, Dropout from keras.layers.convolutional import Convolution1D, MaxPooling1D, ZeroPadding1D from tensorflow.keras.optimizers import SGD #import cv2, numpy as np import warnings warnings.filterwarnings(ignore) 加载DEAP数据集 data_training [] label_training [] data_testing [] label_testing []for subjects in subjectList:with open(/content/drive/My Drive/leading_ai/try/s subjects .npy, rb) as file:sub np.load(file,allow_pickleTrue)for i in range (0,sub.shape[0]):if i % 5 0:data_testing.append(sub[i][0])label_testing.append(sub[i][1])else:data_training.append(sub[i][0])label_training.append(sub[i][1])np.save(/content/drive/My Drive/leading_ai/data_training, np.array(data_training), allow_pickleTrue, fix_importsTrue) np.save(/content/drive/My Drive/leading_ai/label_training, np.array(label_training), allow_pickleTrue, fix_importsTrue) print(training dataset:, np.array(data_training).shape, np.array(label_training).shape)np.save(/content/drive/My Drive/leading_ai/data_testing, np.array(data_testing), allow_pickleTrue, fix_importsTrue) np.save(/content/drive/My Drive/leading_ai/label_testing, np.array(label_testing), allow_pickleTrue, fix_importsTrue) print(testing dataset:, np.array(data_testing).shape, np.array(label_testing).shape) 数据标准化 from sklearn.preprocessing import StandardScaler scaler StandardScaler() x_train scaler.fit_transform(x_train) x_test scaler.fit_transform(x_test) 定义训练超参数 batch_size 256 num_classes 10 epochs 200 input_shape(x_train.shape[1], 1) 定义模型 from keras.layers import Convolution1D, ZeroPadding1D, MaxPooling1D, BatchNormalization, Activation, Dropout, Flatten, Dense from keras.regularizers import l2model Sequential() intput_shape(x_train.shape[1], 1) model.add(Conv1D(164, kernel_size3,padding same,activationrelu, input_shapeinput_shape)) model.add(BatchNormalization()) model.add(MaxPooling1D(pool_size(2))) model.add(Conv1D(164,kernel_size3,padding same, activationrelu)) model.add(BatchNormalization()) model.add(MaxPooling1D(pool_size(2))) model.add(Conv1D(82,kernel_size3,padding same, activationrelu)) model.add(MaxPooling1D(pool_size(2))) model.add(Flatten()) model.add(Dense(82, activationtanh)) model.add(Dropout(0.2)) model.add(Dense(42, activationtanh)) model.add(Dropout(0.2)) model.add(Dense(21, activationrelu)) model.add(Dropout(0.2)) model.add(Dense(num_classes, activationsoftmax)) model.summary() 模型配置和训练 model.compile(losskeras.losses.categorical_crossentropy,optimizeradam,metrics[accuracy])historymodel.fit(x_train, y_train,batch_sizebatch_size,epochsepochs, verbose1,validation_data(x_test,y_test)) 模型测试集验证 score model.evaluate(x_test, y_test, verbose1) print(Test loss:, score[0]) print(Test accuracy:, score[1]) 模型训练过程可视化 # summarize history for accuracy plt.plot(history.history[accuracy]) plt.plot(history.history[val_accuracy]) plt.title(model accuracy) plt.ylabel(accuracy) plt.xlabel(epoch) plt.legend([train, test], locupper left) plt.show() 模型测试集分类混沌矩阵 cmatrixconfusion_matrix(y_test1, y_pred)import seaborn as sns figure plt.figure(figsize(8, 8)) sns.heatmap(cmatrix, annotTrue,cmapplt.cm.Blues) plt.tight_layout() plt.ylabel(True label) plt.xlabel(Predicted label) plt.show() 模型测试集分类report from sklearn import metrics y_pred np.around(model.predict(x_test)) print(metrics.classification_report(y_test,y_pred)) 1D-CNNGRU网络 数据预处理 必要库函数加载,数据加载预处理同2D CNN一样不在赘述。 !pip install githttps://github.com/forrestbao/pyeeg.git import numpy as np import pyeeg as pe import pickle as pickle import pandas as pd import matplotlib.pyplot as plt import mathimport os import time import timeit import keras import keras.backend as K from keras.models import Model from keras.layers import Flatten from keras.datasets import mnist from keras.models import Sequential from sklearn.preprocessing import normalize from tensorflow.keras.optimizers import SGD from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.layers.convolutional import ZeroPadding1D from tensorflow.keras.utils import to_categorical from keras.layers import Dense, Dropout, Flatten,GRUimport warnings warnings.filterwarnings(ignore) 模型搭建 from keras.layers import Convolution1D, ZeroPadding1D, MaxPooling1D, BatchNormalization, Activation, Dropout, Flatten, Dense,GRU,LSTM from keras.regularizers import l2from keras.models import load_model from keras.layers import Lambda import tensorflow as tfmodel_2 Sequential()model_2.add(Conv1D(128, 3, activationrelu, input_shapeinput_shape)) model_2.add(MaxPooling1D(pool_size2)) model_2.add(Dropout(0.2))model_2.add(Conv1D(128, 3, activationrelu)) model_2.add(MaxPooling1D(pool_size2)) model_2.add(Dropout(0.2))model_2.add(GRU(units 256, return_sequencesTrue)) model_2.add(Dropout(0.2))model_2.add(GRU(units 32)) model_2.add(Dropout(0.2))model_2.add(Flatten())model_2.add(Dense(units 128, activationrelu)) model_2.add(Dropout(0.2))model_2.add(Dense(units num_classes)) model_2.add(Activation(softmax))model_2.summary() 模型编译和训练 model_2.compile(optimizer adam,loss categorical_crossentropy,metrics[accuracy] )history_2 model_2.fit(x_train, y_train,epochsepochs,batch_sizebatch_size,verbose1,validation_data(x_test, y_test),callbacks[keras.callbacks.EarlyStopping(monitorval_loss,patience20,restore_best_weightsTrue)] ) 模型训练过程可视化 # summarize history for accuracy plt.plot(history_2.history[accuracy],colorgreen,linewidth3.0) plt.plot(history_2.history[val_accuracy],colorred,linewidth3.0) plt.title(model accuracy) plt.ylabel(accuracy) plt.xlabel(epoch) plt.legend([train, test], locupper left)plt.savefig(/content/drive/My Drive/GRU/model accuracy.png) plt.show()# summarize history for loss plt.plot(history_2.history[loss],colorgreen,linewidth2.0) plt.plot(history_2.history[val_loss],colorred,linewidth2.0) plt.title(model loss) plt.ylabel(loss) plt.xlabel(epoch) plt.legend([train, test], locupper left)plt.savefig(/content/drive/My Drive/GRU/model loss.png) plt.show() 模型测试集分类混沌矩阵和分类report LSTM网络 数据加载/预处理 同上 模型搭建和训练 from keras.regularizers import l2from keras.layers import Bidirectionalfrom keras.layers import LSTMmodel Sequential()model.add(Bidirectional(LSTM(164, return_sequencesTrue), input_shapeinput_shape))model.add(Dropout(0.6))model.add(LSTM(units 256, return_sequences True)) model.add(Dropout(0.6))model.add(LSTM(units 82, return_sequences True)) model.add(Dropout(0.6))model.add(LSTM(units 82, return_sequences True)) model.add(Dropout(0.4))model.add(LSTM(units 42))model.add(Dropout(0.4))model.add(Dense(units 21))model.add(Activation(relu))model.add(Dense(units num_classes))model.add(Activation(softmax))model.compile(optimizer adam, loss keras.losses.categorical_crossentropy,metrics[accuracy])model.summary()mmodel.fit(x_train, y_train,epochs200,batch_size256,verbose1,validation_data(x_test, y_test)) 模型训练过程可视化 import matplotlib.pyplot as plt print(m.history.keys()) # summarize history for accuracy plt.plot(m.history[accuracy],colorgreen,linewidth3.0) plt.plot(m.history[val_accuracy],colorred,linewidth3.0)plt.title(model accuracy) plt.ylabel(accuracy) plt.xlabel(epoch) plt.legend([train, test], locupper left)plt.savefig(./Bi- LSTM/model accuracy.png) plt.show()import imageio plt.plot(m.history[loss],colorgreen,linewidth2.0) plt.plot(m.history[val_loss],colorred,linewidth2.0)plt.title(model loss) plt.ylabel(loss) plt.xlabel(epoch) plt.legend([train, test], locupper left)#to save the image plt.savefig(./Bi- LSTM/model loss.png) plt.show() 模型测试集分类性能 代码获取 后台私信请注明文章题目数据需要自己下载和处理 相关项目和代码问题欢迎交流。
http://www.dnsts.com.cn/news/142188.html

相关文章:

  • 成都网站建设优化公司电话512内存服务器做网站
  • 免费手机网站制作方法wordpress插件证书认证网站
  • 学院网站建设时间控制变更申请表企业网站怎么做产品图片轮播
  • 网站开发包括南通智能模板建站
  • 昆明网站快速优化排名一号网站建设
  • 360建站网站建设 .影响力科技
  • 网站死链怎么办wordpress免费企业网站
  • 网站备案简介怎么写做网站自动赚钱吗
  • 网站asp怎么做二级域名网站
  • 六盘水网站设计wordpress调用地图导航
  • 诸城盟族网站建设2023二级建造师报名官网入口
  • 自己做网站用中文为什么是乱码网络营销模式的优缺点分析
  • 吉林省建设厅监理协会网站网站小图标怎么做的
  • 萝岗企业网站建设wordpress转发301
  • 七七鱼竞价托管湖南专业的关键词优化
  • 各大平台的logo图案网站seo策划
  • 青少年心理建设网站怎样做网站链接
  • 网站运营是什么网站轮播图怎么做的
  • 企业网站建设总结报告wordpress如何导入附件
  • 建设局查询网站win2008 iis7发布网站
  • 网站的建设思想鲜花网站建设的目标
  • 无锡网站建设选千客云网络济南网站建设方案报价
  • 建设网站需要什么基础知识如何给网站添加cnzz
  • 网站建设信息公开和解读回应有关网站开发的创意
  • 加强学院网站建设注册网址怎么注册
  • 免费建站的站点网站自学网页设计要多久
  • 免费网站建设专业的公司网站直播怎么做
  • 四川建行网站企业sns网站需求
  • 中学生做的安全作业网站网站交换链接的网络营销意义
  • 网站建设技术流程图磁力搜索引擎2023