当前位置: 首页 > news >正文

注册网站安全吗公司的论坛与网站绑定

注册网站安全吗,公司的论坛与网站绑定,寮步网站建设公司,昌平区事业单位公共知识培训网站一、NLP 自然语言处理 NLP 是机器学习在语言学领域的研究#xff0c;专注于理解与人类语言相关的一切。NLP 的目标不仅是要理解每个单独的单词含义#xff0c;而且也要理解这些单词与之相关联的上下文之间的意思。 常见的NLP 任务列表#xff1a; 对整句的分类#xff1…一、NLP 自然语言处理 NLP 是机器学习在语言学领域的研究专注于理解与人类语言相关的一切。NLP 的目标不仅是要理解每个单独的单词含义而且也要理解这些单词与之相关联的上下文之间的意思。 常见的NLP 任务列表 对整句的分类如获取评论的好坏、垃圾邮件的分类如判断两个句子的逻辑相关性对句中单词的分类如单词的语法构成名词、动词、形容词、单词的实体命名人、地点、时间文本内容的生成如文章续写、屏蔽词填充文本答案的提取给定问题根据上下文信息提前答案从提示文本生成新句子如文本翻译、文本总结 NLP 并不局限于书面文本它也能解决语音识别、计算机视觉方方面的问题如生成音频样本的转录、图像的描述等 二、Transformer Hugging Face Hub 社区是最大的Transformer开发者的交流地里面分享了数万个预训练模型、数据集等任何人都可以下载和使用。而Transformers 库提供了创建和使用这些共享模型、数据集的功能。 # # 安装 pip install transformers# # 导入 import transformersTransformers库的优势 简单Transformers只提供一个 API只需两行代码即可下载、加载和使用 NLP 模型进行推理灵活所有模型的核心都是 PyTorch 的nn.Module 类或 TensorFlow 的tf.keras.Model 类独立模型之间相互独立每个模型拥有的层都在一个模型文件内。这个是与其他 ML 库截然不同的 2.1、Transformer 发展历史 Transformer 架构于2017 年 6 月推出。最初的研究重点是翻译任务。随后推出了几个有影响力的模型包括 2018年6月GPT第一个预训练的Transformer模型用于各种NLP任务的微调并获得了SOTA的结果2018 年10月BERT另一个大型预训练模型旨在生成更好的句子摘要2019年2月GPT-2GPT 的改进和更大版本由于道德问题没有立即公开发布2019年10月DistilBERTBERT 的精炼版速度提高了 60%内存减少了 40%但仍然保留了 BERT 97% 的性能2019年10月BART、T5两个大型预训练模型使用与原始 Transformer 模型相同的架构2020年5月GPT-3GPT-2的更大版本能够在各种任务上表现良好无需微调称为zero-shot零样本学习 上面提到的所有Transformer 模型GPT、BERT、BART、T5 等都是预训练语言模型以自监督的方式接受了大量原始文本的训练预训练模型只是对所训练语言进行的统计理解对于特定的实际任务来说并不适用。正因如此预训练模型还要经历一个迁移学习的过程针对具体的任务以监督学习的方式进行微调。 预训练模型 从零开始训练权重随机初始化没有任何先验知识需要大量数据用于训练训练时间也可能很久 微调模型 是在预训练模型的基础上进行的训练要有具体任务的数据集微调训练的时间不会很久微调模型的成本较低时间、数据、财务、硬件等更容易部署。 所以在实际应用中应该始终尝试去寻找与实际任务接近的预训练模型再使用具体任务的小样本数据集以监督学习的方式来微调它。 2.2、Transformer 详细原理 Transformer 详细原理包括 编码器Encoder部分解码器Decoder部分Self-Attention 自注意力原理Multi-Head Attention 多头注意力机制 详细原理请看链接Transformer模型原理 2.3、Transformer 能做什么 Transformers 库中最基本的对象是pipeline() 函数它将必要的预处理和后处理连接起来使我们能直接输入文本并获取对应需求的答案。目前可用的一些管道模型有 ner实体命名识别fill-mask掩码填充translation翻译summarization文章总结text-generation文本生成question-answering问题回答sentiment-analysis情绪分析zero-shot-classification零样本分类feature-extraction获取文本的向量表示 from transformers import pipeline# # # 命名实体识别 # ner pipeline(ner, grouped_entitiesTrue) # print(ner(My name is Sylvain and I work at Hugging Face in Brooklyn.))# # # 掩码填充 # fill_mask pipeline(fill-mask) # print(fill_mask(The cat is mask on the mat.))# # # 翻译 # translator pipeline(translation, modelHelsinki-NLP/opus-mt-fr-en) # print(translator(Ce cours est produit par Hugging Face.))# # # 文章总结 # summarizer pipeline(summarization) # print(summarizer(xxxxxxxxxxxxxxxxxx))# # # 文本生成 # generator pipeline(text-generation) # print(generator(In this course, we will teach you how to)) # # # 指定hugging face Hub网站中任意模型 # generator pipeline(text-generation, modeldistilgpt2) # print(generator(In this course, we will teach you how to, max_length30, num_return_sequences2))# # # 问题回答 # question_answerer pipeline(question-answering) # print(question_answerer(questionWhere do I work?, contextMy name is Sylvain and I work at Hugging Face in Brooklyn))# # 情绪分析 classifier pipeline(sentiment-analysis) # # 该库只能输入英文。 print(classifier([Ive been waiting for a HuggingFace course my whole life., I hate this so much!]))# # # 零样本分类zero-shot-classification # classifier pipeline(zero-shot-classification) # print(classifier(This is a course about the Transformers library, candidate_labels[education, politics, business]))# # # 获取文本的向量表示 # feature_extraction pipeline(feature-extraction) # print(feature_extraction(i am a studet))NLP 在处理问题使主要涉及三个步骤 人类可理解的文本被预处理为模型可理解的数据格式将可理解的数据传递给模型模型做出预测模型的预测再经过后处理输出人类可理解的文本。 例如 # # 情绪分析 classifier pipeline(sentiment-analysis) # # 该库只能输入英文。 print(classifier([Ive been waiting for a HuggingFace course my whole life., I hate this so much!]))# # 结果 # [{label: POSITIVE, score: 0.9598047137260437}, # {label: NEGATIVE, score: 0.9994558095932007}]2.4、
http://www.dnsts.com.cn/news/153911.html

相关文章:

  • 简述如何对网站进行推广?公司网站别人做的怎么签合同
  • 兼职网站平台有哪些wordpress手动清楚插件
  • 天长市城乡规划建设局网站wordpress首页置顶推荐问题
  • 系统之家网站怎么做的wordpress 网站 seo
  • 彩票网站建设与推广潍坊哪里能找到做网站的
  • 企业互联网网站定位工信部域名备案管理系统
  • 电子商务网站建设与管理实验总结建网站费用
  • 盐城做网站推广电话酒店建筑设计网站
  • 网站开发需要那些技能做网站一般哪里找
  • 九江建网站报价优秀界面设计作品
  • 建设网站的建议网站建设管理员角色设置
  • 用凡科做网站需要花钱吗大连仟亿科技有限公司
  • 网站总是跳转dede58淄博网站开发
  • 甘肃建设职工教育培训中心网站代理注册公司代理费多少钱
  • 网站建设服务yisinuo订单网站怎么做
  • 做网站界面设计大小网站建设及外包
  • 亚马逊海外版网站网站设计的时间计划
  • wordpress网站第一次打开慢建设网站费用如何做账
  • 青岛自助建站软件企业门户网站管理办法
  • 优化公司网站注册安全工程师职业资格制度规定
  • 网站开发的目的意义如何做淘宝直播教学视频网站
  • 成都小程序制作开发wordpress目录seo
  • 大学校园网站建设翻页大图网站
  • 买奢侈品代工厂做的产品的网站名互联网网站类型
  • 虚拟主机可建站1个是不是只能放一个网站千锋教育成立于哪一年
  • 当地建设局网站佛山网上办事大厅官网
  • 网站会员注册系统怎么做视频html制作百度页面
  • ifront做原型控件的网站成都app开发
  • 建设银行官方门户网站做临时工有哪些网站
  • 服务器禁止ip访问网站电商网站模块有哪些