当前位置: 首页 > news >正文

中小企业网站推广wordpress 商城id连续

中小企业网站推广,wordpress 商城id连续,做网站用什么好,做自己的网站挣钱目录 0 问题背景 1 数据准备 2 问题解决 2.1 模型构建 #xff08;1#xff09;符号规定 #xff08;2#xff09;基本假设 #xff08;3#xff09;模型的分析与建立 2.2 模型求解 3 小结 0 问题背景 1960年—1985年全国社会商品零售额如图1 所示 表1全国社… 目录 0 问题背景 1  数据准备 2 问题解决 2.1 模型构建 1符号规定 2基本假设 3模型的分析与建立 2.2 模型求解 3 小结 0 问题背景 1960年—1985年全国社会商品零售额如图1 所示 表1全国社会商品零售额数据 年份 1960 1961 1962 1963 1964 1965 1966 1967 零售总额 696.6 607.7 604 604.5 638.2 670.3 732.8 770.5 年份 1968 1969 1970 1971 1972 1973 1974 1975 零售总额 737.3 801.5 858 929.2 1023.3 1106.7 1163.6 1271.1 年份 1976 1977 1978 1979 1980 1981 1982   零售总额 1339.4 1432.8 1558.6 1800 2140 2350 2570   问题试用三次指数平滑法预测1983年和1985年全国社会商品零售额 1  数据准备 create table sale_amount as select 1960 years, 696.6 sale_amount from dual union all select 1961 years, 607.7 sale_amount from dual union all select 1962 years, 604 sale_amount from dual union all select 1963 years, 604.5 sale_amount from dual union all select 1964 years, 638.2 sale_amount from dual union all select 1965 years, 670.3 sale_amount from dual union all select 1966 years, 732.8 sale_amount from dual union all select 1967 years, 770.5 sale_amount from dual union all select 1968 years, 737.3 sale_amount from dual union all select 1969 years, 801.5 sale_amount from dual union all select 1970 years, 858 sale_amount from dual union all select 1971 years, 929.2 sale_amount from dual union all select 1972 years, 1023.3 sale_amount from dual union all select 1973 years, 1106.7 sale_amount from dual union all select 1974 years, 1163.6 sale_amount from dual union all select 1975 years, 1271.1 sale_amount from dual union all select 1976 years, 1339.4 sale_amount from dual union all select 1977 years, 1432.8 sale_amount from dual union all select 1978 years, 1558.6 sale_amount from dual union all select 1979 years, 1800 sale_amount from dual union all select 1980 years, 2140 sale_amount from dual union all select 1981 years, 2350 sale_amount from dual union all select 1982 years, 2570 sale_amount from dual 2 问题解决 2.1 模型构建 1符号规定 2基本假设 假设本问题考虑全社会商品零售额数据假设本问题只考虑销售不考虑其余因素假设本问题只考虑销售额总额不考虑其余分支 3模型的分析与建立 令加权系数则计算公式为 其中 表示一次指数的平滑值表示二次次指数的平滑值表示三次指数的平滑值。初始值为 三次指数平滑法的预测模型为 其中 2.2 模型求解 步骤1计算初始值 select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rn from (select years, sale_amount, casewhen rn 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t 步骤2 计算一次平滑值 with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t ) --计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn ) select * from s1 order by years; 步骤3计算二次平滑值 with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t ) --计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn ) --计算二次平滑值 , s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3 ) select * from s2 order by years; 步骤4计算三次平滑值 with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t ) --计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn ) --计算二次平滑值 , s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3 )--计算三次平滑值 ,s3 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s2_p3, cast(sum(case when t2.rn t1.rn then t2.s2_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s3_p3from s2 t1,s2 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s2_p3 ) select * from s3 order by years; 步骤4计算二次函数模型系数 with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t ) --计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn ) --计算二次平滑值 , s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3 )--计算三次平滑值 ,s3 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, t1.s2_p3, cast(sum(case when t2.rn t1.rn then t2.s2_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s3_p3from s2 t1,s2 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, t1.s2_p3 )--计算二次趋势模型系数 select years, sale_amount, init_sale_amount, rn, s1_p3, s2_p3, s3_p3, cast(case when rk1 then 3*s1_p3 - 3*s2_p3 s3_p3 else 0 end as decimal(18,4)) a_p3, cast(case when rk1 then ((6-5*0.3)*s1_p3 - 2*(5-4*0.3)*s2_p3 (4-3*0.3)*s3_p3 ) * 0.3/(2*power(0.7,2)) else 0 end as decimal(18,2)) b_p3, cast(case when rk1 then (s1_p3 - 2*s2_p3 s3_p3 ) * power(0.3,2)/(2*power(0.7,2)) else 0 end as decimal(18,4)) c_p3 from (select years, sale_amount, init_sale_amount, rn, s1_p3, s2_p3, s3_p3, row_number() over (order by rn desc) rkfrom s3) t order by years 步骤5构建二次预测模型,并预测结果值 由步骤4得知  a2572.2607,b259.3367,c8.9818 则预测模型为 最后求得19831985年销售额的预测值分别是2840.5792亿元3431.107亿元。 3 小结 本文针对商品零售额采用三次指数平滑法构建预测模型文中选取加权系数 求解模型并利用SQL语言进行实现若实际中有相关需求可针对加权系数再进行优化利用RMSE均方根误差来使模型达到最优。 如果您觉得本文还不错对你有帮助那么不妨可以关注一下我的数字化建设实践之路专栏这里的内容会更精彩。 专栏 原价99现在活动价59.9按照阶梯式增长还差5个人上升到69.9最终恢复到原价。 专栏优势 1一次收费持续更新。 2实战中总结的SQL技巧帮助SQLBOY 在SQL语言上有质的飞越无论你应对业务难题及面试都会游刃有余【全网唯一讲SQL实战技巧方法独特】 SQL很简单可你却写不好每天一点点收获不止一点点-CSDN博客  3实战中数仓建模技巧总结让你认识不一样的数仓。【数据建模业务建模不一样的认知体系】如果只懂数据建模而不懂业务建模数仓体系认知是不全面的 4数字化建设当中遇到难题解决思路及问题思考。 我的专栏具体链接如下 数字化建设通关指南_莫叫石榴姐的博客-CSDN博客
http://www.dnsts.com.cn/news/128047.html

相关文章:

  • 南通网站开发做网站用虚拟服务器可以吗
  • 大连网站公司做旅游网站犯法吗
  • net做网站wordpress添加相册页面
  • 电子商务网站开发开发背景站长之家怎么查询网站哪家做的
  • 山西网站开发建设h5网站建设服务
  • 大连网站建设金豆企业安全文化的建设方案
  • 济南建网站最好的网站登录页面空白
  • 珠海做网站的阳江网红景点
  • 河南定制网站建设企业二手网站排名
  • 中国社区建设展示中心网站整合营销传播策划方案
  • 学生个人网站模板网站目录架构
  • 淘宝联盟如何建设个人网站网站设计需求模板
  • 网站开发培训邢台做网站改版
  • 中国建设银行积分网站河南搜索引擎推广多少钱
  • 温州市城乡建设厅网站wordpress手机版侧栏导航栏
  • 网站建设需要待摊吗网站建设费 科目
  • 电子商务网站软件建设的核心是网页设计实验报告心得和总结500字
  • 百度做网站免费电商设计师发展前景
  • 网站推广渠道及特点中国金融互联网协会官网
  • 网站开发与编程东莞阳光网站建设成效
  • 企业官网网站建设媒体营销
  • 开发网站如何选需要注意什么怎么用editplus做网站
  • 手机免费制作网站宜兴百度推广公司
  • 网站建设项目明细表网站流量统计工具有哪些
  • 海南网站开发找人做logo网站
  • 做网站的费用记哪个会计科目用asp.net做的网站实例
  • 专门做网站需要敲代码么无线网的网址是多少
  • 小型企业网站开发法人一证通主副证书管理新流程
  • 做照片的ppt模板下载网站深圳广告公司名录
  • 昆山兼职做网站一家专门做房产特卖的网站