当前位置: 首页 > news >正文

网站开发常用字体王占山将军简介

网站开发常用字体,王占山将军简介,建设人才库网站,管理咨询公司最专业的公司论文网址#xff1a;[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org) 论文代码#xff1a;https://github.com/ChaselTsui/mmrotate-dcfl 英文是纯手打的#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org) 论文代码https://github.com/ChaselTsui/mmrotate-dcfl 英文是纯手打的论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误若有发现欢迎评论指正文章偏向于笔记谨慎食用 目录 1. 省流版 1.1. 心得 1.2. 论文总结图 2. 论文逐段精读 2.1. Abstract 2.2. Introduction 2.4. Method 2.4.1. Dynamic Prior 2.4.2. Coarse Prior Matching 2.4.3. Finer Dynamic Posterior Matching 2.5.  Experiments 2.5.1. Datasets 2.5.2. Implementation Details 2.5.3. Main Results 2.5.4. Ablation Study 2.6. Analysis 2.7. Conclusion 3. Reference List 1. 省流版 1.1. 心得 1为什么学脑科学的我要看这个啊愿世界上没有黑工 2最开始写小标题的时候就发现了分得好细啊好感度 3作为一个外行人这文章感觉提出了好多东西 1.2. 论文总结图 2. 论文逐段精读 2.1. Abstract ①Extreme geometric shapes (tiny) and finite features (few pixels) of tiny rotating objects will cause serious mismatch (inaccurate positional prior?) and imbalance (inaccurate positive sample features?) issues ②They proposed dynamic prior and coarse-to-fine assigner, called DCFL posterior  adj.在后部的;在后面的  n.臀部;屁股 2.2. Introduction ①Oriented bounding box greatly eliminates redundant background area, especially in aerial images ②Comparison figure: where M* denotes matching function; green, blue and red boxes are true positive, false positive, and false negative predictions respectively, the left figure set is static and the right is dynamic ③Figure of mismatch and imbalance issues: each point in the left figure denotes a prior location先验打那么多个点啊...而且为啥打得那么整齐这是什么one-stage吗 饼状图是说当每个框都是某个角度的时候吗当每个框都不旋转的时候阳性样本平均数量是5.2还是说饼状图的意思是自由旋转某个特定角度的框的阳性样本是多少多少这个饼状图并没有横向比较诶只有这张图自己内部比较。 柱状图是锚框大小不同下平均阳性 ④They introduce dynamic Prior Capturing Block (PCB) as their prior method. Based on this, they further utilize Cross-FPN-layer Coarse Positive Sample (CPS) to assign labels. After that, they reorder these candidates by prediction (posterior), and present gt by finer Dynamic Gaussian Mixture Model (DGMM) eradicate  vt.根除;消灭;杜绝  n.根除者;褪色灵 2.3. Related Work 2.3.1. Oriented Object Detection 1Prior for Oriented Objects 2Label Assignment 2.3.2. Tiny Object Detection 1Multi-scale Learning 2Label Assignment 3Context Information 4Feature Enhancement 2.4. Method 1Overview ①For a set of dense prior , where  denotes width,  denotes height and  denotes the number of shape information什么东西啊是那些点吗, mapping it to  by Deep Neural Network (DNN): where  represents the detection head探测头...外行不太懂感觉也就是一个函数嘛; one part  in  denotes the classification scores, where  means the class number更被认为是阳性的样本那层的里的数据会更大吗; one part  in  denotes the classification scores, where  means the box parameter number查宝说是w, h, x, y, a之类的是box parameter ②In static methods, the pos labels assigned for  is  ③In dynamic methods, the pos labels set  integrate posterior information:  ④The loss function: where  and  represent the number of positive and negative samples,  is the neg labels set ⑤Modelling ,  and : 2.4.1. Dynamic Prior ①Flexibility may alleviate mismatch problem ②Each prior represents a feature point ③The structure of Prior Capturing Block (PCB): the surrounding information is considered by dilated convolution. Then caputure dynamic prior by Deformable Convolution Network (DCN). Moreover, using the offset learned from the regression branch to guide feature extraction in the classification branch and improve alignment between the two tasks. ④To achieve dynamic prior capturing, initializing each prior loaction  by each feature point’s spatial location . In each iteration, capture the offset set of each prior position  to update : where  denotes the stride of feature map,  denotes the number of offsets; 2D Gaussian distribution  is regarded as the prior distribution; 动态的作为高斯的平均向量啥玩意儿; ⑤Presetting a square  on each feature point ⑥The co-variance matrix: dilate  v.扩张;(使)膨胀;扩大    deformable  adj.可变形的应变的易变形的 2.4.2. Coarse Prior Matching ①For prior, limiting  to a single FPN may cause sub-optimal layer selection and releasing  to all layers may cause slow convergence ②Therefore, they propose Cross-FPN-layer Coarse Positive Sample (CPS) candidates, expanding candidate layers to s nearby spatial location and adjacent FPN layers ③Generalized Jensen-Shannon Divergence (GJSD) constructs CPS between  and : which yields a closed-form solution; where ; and due to the homogeneity of  and ,  ④Choosing top  prior with highest GJSD for each 选差异最大的那些 2.4.3. Finer Dynamic Posterior Matching ①Two main steps are contained in this section, a posterior re-ranking strategy and a Dynamic Gaussian Mixture Model (DGMM) constraint ②The Possibility of becoming True predictions (PT) of the  sample  is: choosing top  samples with the highest scores as Medium Positive Sample (MPS) candidates ③They apply DGMM, which contains geometry center and semantic center in one object, to filter far samples ④For specific instance , the mean vector  of the first Gaussian is the geometry center , the deduced  in MPS denotes semantic center  ⑤Parameterizing a instance: where  denotes weight of each Gaussian distribution and their summation is 1; equals to s 什么啊这是但是m可以等于1或者2诶那你g的协方差不就又是语义中心又是几何中心了吗 ⑥For any , setting negative masks 2.5.  Experiments 2.5.1. Datasets ①Datasets: DOTAv1.0 /v1.5/v2.0, DIOR-R, VisDrone, and MS COCO ②Ablation dataset: DOTA-v2.0 with the most numbet of tiny objects ③Comparing dataset: DOTA-v1.0, DOTAv1.5, DOTA-v2.0, VisDrone2019, MS COCO and DIOR-R 2.5.2. Implementation Details ①Batch size: 4 ②Framework based: MMDetection and MMRotate ③Backbone: ImageNet pre-trained models ④Learning rate: 0.005 with SGD ⑤Momentum: 0.9 ⑥Weight decay: 0.0001 ⑦Default backbone: ResNet-50 with FPN ⑧Loss: Focal loss for classifying and IoU loss for regression ⑨Data augmentation: random flipping ⑩On DOTA-v1.0 and DOTA-v2.0, using official setting to crop images to 1024×1024. The overlap is 200 and epoch is 12 ⑪On other datasets, setting the input size to 1024 × 1024 (overlap 200), 800 × 800, 1333 × 800, and 1333×800 for DOTA-v1.5, DIOR-R, VisDrone, and COCO respectively. Epoch is set as  40, 40, 12, and 12 on the DOTA-v1.5, DIOR-R, COCO, and VisDrone 2.5.3. Main Results 1Results on DOTA series ①Comparison table on DOTA-v2.0 OBB: where the red ones are the best and the blue ones are the second best performance on each metric ②Comparison table on DOTA-v1.0 OBB: ③Comparison table on DOTA-v1.5 OBB: 2Results on DIOR-R ①Comparison table on DIOR-R: ②Results of typical tiny objects vehicle, bridge, and wind-mill: 3Results on HBB Datasets ①Comparison table on VisDrone, MS COCO abd DOTA-v2.0 HBB: 2.5.4. Ablation Study 1Effects of Individual Strategy ①Employ prior on each feature point ②Individual effectiveness: 2Comparisons of Different CPS ①Ablation: 3Fixed Prior and Dynamic Prior ①Ablation: 4Detailed Design in PCB ①Using the offset of the regression head to guide the offset classification head will align better than applying DCN to a single regression branch 5Effects of Parameters ①Parameter adjustment of  and : ②Parameter adjustment of  attenuate  v. 使减弱使纤细稀薄  adj. 减弱的稀薄的细小的 2.6. Analysis 1Reconciliation of imbalance problems ①The mean predicted IoU and the mean positive sample number of  holding different angles and different scales (absolute size): where the left column denotes the quality imbalance and the right column denotes the quantity imbalance. The dynamic learning from coarse to fine proposed in the paper solves the problem of sample mismatch, and more positive samples are compensated to the previous abnormal angles and scales, namely the rotated small-scale real boxes can be allocated to more positive samples than before dissection  n. 解剖切开解剖体详细查究    delve  vi./vt. 钻研探究挖n. 穴洞 2Visualization ①Visualization of elimilations of False Negative and False Positive predictions: where the first row and the second row are the results of RetinaNet-OBB and DCFL respectively. Furthermore, TP, FN and FP are green, red and blue frames. It can be see that DCFL can effectively locate oriented small objects with extreme shapes ②Visualization of sampled dynamic priors: 3Speed ①Compared with R3Det, S 2A-Net and RetinaNet with 16.2, 18.9, 20.8, FPS of DCFL is 20.9, which means the high efficiency of DCFL ②Parameters and GLOPs of DCFL: 2.7. Conclusion For solving the problems of mismatched feature prior and unbalanced positive samples, the authors proposed DCFL model with dynamic prior and coarse-to-fine assigner. Ultimately,, it achieves a remarkable performance 3. Reference List Xu, C. et al. (2023) Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection, CVPR. doi: https://doi.org/10.48550/arXiv.2304.08876
http://www.dnsts.com.cn/news/77194.html

相关文章:

  • 网站浮动条进贤网站建设
  • 网站设计的开发工具和环境wordpress文章rss
  • 网站分类查询p2p提供网站建设违法
  • 北京做网站个人苏州门户网站建设
  • 西北网站建设做网站电商云数据库有用吗
  • 廊坊做网站厂商定制建筑设计学什么的
  • 公司门户网站及oa系统建设的请示物流网站建设规划总结
  • 品牌型网站成功案例图片长链接转短链接
  • 集团网站建设的好处资源下载网站wordpress
  • 济南网站制作推广网站原型图大小
  • 大庆建设网站表格下载老鹰画室网站哪家做的
  • 兰州网站优化seo百度一下官网搜索引擎
  • 网站开发的开发语言网站建设 镇江丹阳
  • 网站站建设建技设术技术wordpress企业官网主题下载
  • 网站怎么做qq微信登陆界面设计网站小边框元素使用
  • 成都网站建设怎么样网站静态化
  • 阿里巴巴网站建设教程视频淄博网络优化哪家专业
  • 樟木头镇网站建设最近出入上海最新规定
  • 成都建设官方网站英文网站seo发展前景
  • 苏州做网站外包的公司有哪些域名和网址是什么关系
  • 广西建设学院网站首页云计算公司排名
  • 寻找网站建设员沈阳网站建设公司
  • 橙 网站个人做当地旅游网站
  • 珠海门户网站建设哪家专业怎样建立一个主题网站
  • 重庆地产网站建设方案中国品牌设计
  • 谷歌网站建站怎么做品牌的官方网站
  • 游戏类企业网站模板室内设计和平面设计哪个比较吃香
  • 网站建设捌金手指下拉六ftp更换网站
  • 我有服务器怎么做网站html简单的个人主页
  • 颇有名气的网站建设专家lol解说网站源码