宠物电子商务网站建设方案,一个网站的建设需要什么,谷歌排名,成都网站建设 木木科技文章目录一、树的概念及结构1.树的概念2.树的相关概念名词3.树的表示4.树在实际中的运用二、二叉树概念及结构1.二叉树的概念2.特殊的二叉树3.二叉树的性质4.二叉树的存储结构三、二叉树链式结构的实现1.结构的定义2.构建二叉树3.二叉树前序遍历4.二叉树中序遍历5.二叉树后序遍…
文章目录一、树的概念及结构1.树的概念2.树的相关概念名词3.树的表示4.树在实际中的运用二、二叉树概念及结构1.二叉树的概念2.特殊的二叉树3.二叉树的性质4.二叉树的存储结构三、二叉树链式结构的实现1.结构的定义2.构建二叉树3.二叉树前序遍历4.二叉树中序遍历5.二叉树后序遍历6.二叉树层次遍历7.二叉树节点个数8.二叉树叶子节点个数9.二叉树第k层节点个数10.二叉树的高度11.在二叉树中查找值为x的节点12.判断二叉树是否是完全二叉树13.销毁二叉树四、完整代码1.BTree.h2.BTree.c3.test.c4.Queue.h5.Queue.c一、树的概念及结构
1.树的概念
树是一种非线性的数据结构它是由nn0个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树也就是说它是根朝上而叶朝下的。 树有一个特殊的结点称为根结点根节点没有前驱结点除根节点外其余结点被分成(M0)个互不相交的集合T1、T2、……、Tm其中每一个集合Ti(1 i m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱可以有0个或多个后继节点
因此树是递归定义的。 【注意】树形结构中子树之间不能有交集否则就不是树形结构 在上面前三个图中节点直接形成了回路所以不能称为数应该称为图。
2.树的相关概念名词 节点的度一个节点含有的子树的个数称为该节点的度 如上图A的为6
叶节点或终端节点度为0的节点称为叶节点 如上图B、C、H、I…等节点为叶节点
非终端节点或分支节点度不为0的节点 如上图D、E、F、G…等节点为分支节点
双亲节点或父节点若一个节点含有子节点则这个节点称为其子节点的父节点 如上图A是B的父节点
孩子节点或子节点一个节点含有的子树的根节点称为该节点的子节点 如上图B是A的孩子节点
兄弟节点具有相同父节点的节点互称为兄弟节点 如上图B、C是兄弟节点
树的度一棵树中最大的节点的度称为树的度 如上图树的度为6
节点的层次从根开始定义起根为第1层根的子节点为第2层以此类推
树的高度或深度树中节点的最大层次 如上图树的高度为4
堂兄弟节点双亲在同一层的节点互为堂兄弟如上图H、I互为兄弟节点
节点的祖先从根到该节点所经分支上的所有节点如上图A是所有节点的祖先
子孙以某节点为根的子树中任一节点都称为该节点的子孙。如上图所有节点都是A的子孙
森林由mm0棵互不相交的树的集合称为森林
3.树的表示
树结构相对线性表就比较复杂了要存储表示起来就比较麻烦了既然保存值域也要保存结点和结点之系实际中树有很多种表示方式如双亲表示法孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
typedef int DataType;
struct Node
{struct Node* _firstChild1; // 第一个孩子结点struct Node* _pNextBrother; // 指向其下一个兄弟结点DataType _data; // 结点中的数据域
}4.树在实际中的运用
树在我们实际生活中的应用之一就是用于表示文件系统的目录 二、二叉树概念及结构
1.二叉树的概念
一棵二叉树是结点的一个有限集合该集合:
1.或者为空
2.由一个根节点加上两棵别称为左子树和右子树的二叉树组成 从上图可以看出
1.二叉树不存在度大于2的结点
2.二叉树的子树有左右之分次序不能颠倒因此二叉树是有序树
【注意】对于任意的二叉树都是由以下几种情况复合而成的 现实中的二叉树 2.特殊的二叉树
1.满二叉树一个二叉树如果每一个层的结点数都达到最大值则这个二叉树就是满二叉树。也就是说如果一个二叉树的层数为K且结点总数是 2^k-1则它就是满二叉树。
2.完全二叉树完全二叉树是效率很高的数据结构完全二叉树是由满二叉树而引出来的。对于深度为K的有n个结点的二叉树当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。 3.二叉树的性质
1.若规定根节点的层数为1则一棵非空二叉树的第i层上最多有 2^(i-1)个结点
2.若规定根节点的层数为1则深度为h的二叉树的最大结点数是 2^h-1
3.对任何一棵二叉树, 如果度为0其叶结点个数为 n0,度为2的分支结点个数为n2 ,则有n0 n21 解析如图所示 当二叉树只有一个节点的时候叶子节点数为1度为2的分支节点数为0此时叶子节点数比度为2的节点数多1 当我们增加一个度为1的分支节点的时候会消耗一个叶子节点但同时又会产生一个新的叶子节点所以增加度为1的分支节点时叶子节点的数量不变 当我们增加一个度为2的节点的时候我们会同时产生一个叶子节点所以叶子节点数始终比度为2的分支节点多1 4.若规定根节点的层数为1具有n个结点的满二叉树的深度,hlog(n1). (是log以2为底n1为对数)
高度为h的完全二叉树2^(h-1) N 2^h-1
logN1 h log(N1)
5… 对于具有n个结点的完全二叉树如果按照从上至下从左至右的数组顺序对所有节点从0开始编号则对于序号为i的结点有
1.若i0i位置节点的双亲序号(i-1)/2i0i为根节点编号无双亲节点
2.若2i1n左孩子序号2i12i1n否则无左孩子
3.若2i2n右孩子序号2i22i2n否则无右孩子
概念和性质相关选择题
1.某二叉树共有 399 个结点其中有 199 个度为 2 的结点则该二叉树中的叶子结点数为
A 不存在这样的二叉树
B 200
C 198
D 199
【解析】B 根据结论度为0的节点数比度为2的节点数多1可得n0200
2.在具有 2n 个结点的完全二叉树中叶子结点个数为
A n
B n1
C n-1
D n/2
【解析】A 通过完全二叉树的概念我们知道完全二叉树只存在三种节点分别为度为0度为1和度为2的节点其中度为1的节点要么不存在要么只有一个又根据度为0的节点数比度为2的节点数多1这个结论我们可得n0n1n0-12n,我们知道n0*,n1都为整数又2n为偶数我们可知*n11;n0n;
3.一棵完全二叉树的节点数位为531个那么这棵树的高度为
A 11
B 10
C 8
D 12
【解析】B 我们知道 2^(h-1) N 2^h-1 ,所以h为10
4.二叉树的存储结构
二叉树一般可以使用两种结构存储一种顺序结构一种链式结构。
1.顺序存储
顺序结构存储就是使用数组来存储一般使用数组只适合表示完全二叉树因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储二叉树顺序存储在物理上是一个数组在逻辑上是一颗二叉树。 2.链式存储
二叉树的链式存储结构是指用链表来表示一棵二叉树即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成数据域和左右指针域左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链当前我们学习中一般都是二叉链红黑树等会用到三叉链。 typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{struct BinTreeNode* _pLeft; // 指向当前节点左孩子struct BinTreeNode* _pRight; // 指向当前节点右孩子BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{struct BinTreeNode* _pParent; // 指向当前节点的双亲struct BinTreeNode* _pLeft; // 指向当前节点左孩子struct BinTreeNode* _pRight; // 指向当前节点右孩子BTDataType _data; // 当前节点值域
}三、二叉树链式结构的实现
1.结构的定义
// 符号和结构的定义
typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;
2.构建二叉树
由于二叉树不能进行增加和删除操作所以一般都是给定一个字符串或者一个数组该字符串或者数组有我们创建二叉树所需要的所有节点我们根据字符串或者数组的内容来构建二叉树
【注意】字符串或者数组中 # 表示空节点即上一个节点没有左孩子或者右孩子
// 通过前序遍历的数组 1 2 3 # # 4 5 # # 6 ##构建二叉树
BTNode* BinaryTreeCreat(BTDataType* a, int* pi)
{if (a[*pi] #){(*pi);return NULL;}// 创建根节点BTNode* root (BTNode*)malloc(sizeof(BTNode));if (root NULL){perror(malloc fail);exit(-1);}root-data a[*pi];(*pi);// 创建左右子树root-left BinaryTreeCreat(a, pi);root-right BinaryTreeCreat(a, pi);return root;
}3.二叉树前序遍历
所谓二叉树遍历(Traversal)是按照某种特定的规则依次对二叉树中的节点进行相应的操作并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一也是二叉树上进行其它运算的基础 按照规则二叉树的遍历有前序/中序/后序的递归结构遍历
前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前
中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中间
后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后
由于被访问的结点必是某子树的根所以N(Node、L(Left subtree和R(Right subtree又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
前序遍历递归图解 //二叉树先序遍历
void PreOrder(BTNode* root)
{//如果是空树则返回NULLif (root NULL){printf(NULL );return;}printf(%d , root-data); //访问根节点PreOrder(root-left); //先序遍历左子树PreOrder(root-right); //先序遍历右子树
}
4.二叉树中序遍历
//二叉树中序遍历
void InOrder(BTNode* root)
{//如果是空树则返回NULLif (root NULL){//printf(NULL );return;}InOrder(root-left); //中序遍历左子树printf(%d , root-data); //访问根节点//printf(%c , root-data);InOrder(root-right); //中序遍历右子树
}5.二叉树后序遍历
/ 二叉树后序遍历
void PostOrder(BTNode* root)
{//如果是空树则返回NULLif (root NULL){printf(NULL );return;}PostOrder(root-left); //后序遍历左子树PostOrder(root-right); //后序遍历右子树printf(%d , root-data); //访问根节点
}6.二叉树层次遍历
层序遍历除了先序遍历、中序遍历、后序遍历外还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1层序遍历就是从所在二叉树的根节点出发首先访问第一层的树根节点然后从左到右访问第2层上的节点接着是第三层的节点以此类推自上而下自左至右逐层访问树的结点的过程就是层序遍历 相比于其他三种遍历方式层序遍历采用的是非递归的方式其具体思路是
利用一个队列来存储二叉树节点的地址先让父节点入队列然后父节点出队列同时父节点的左右孩子会入队列如果没有就不入直到队列为空时结束这样使得当一层节点全部出队列的时候下一层的节点刚好全部入队列当队列为空时二叉树的节点就全部访问完毕了
【注意】我们用队列来存储二叉树节点的地址所以我们需要自己实现一个队列也可以把我们之前实现写的队列Queue.h和Queue.c加入到当前工程中此外我们应该将二叉树节点的结构体需要定义在队列结构体的前面。
// 二叉树层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{Queue q;QueueInit(q);if (root)QueuePush(q, root);while (!QueueEmpty(q)){// 取出队头元素BTNode* front QueueFront(q);QueuePop(root);printf(%c , front-data);// 将队头元素的左右子节点入队列if (front-left)QueuePop(q, front-left);if (front-right)QueuePop(q, front-right);}QueueDestroy(q);
}7.二叉树节点个数
我们采用子问题思路来解决我们要计算二叉树节点的个数那么分为左子树的节点个数和右节点的个数再加上根节点 二叉树节点数 左子树节点个数右节点个数根节点
/计算二叉树节点个数
int TreeSize(BTNode* root)
{if (root NULL)return 0;// 左子树节点个数右节点个数根节点return TreeSize(root-left) TreeSize(root-right) 1;
}8.二叉树叶子节点个数
和计算二叉树节点个数方法一样但是叶子节点要求左孩子为空并且右孩子为空所以叶子节点数等与左右叶子数之和
//计算二叉树叶子节点个数
int TreeLeafSize(BTNode* root)
{//空树返回0if (root NULL){return 0;}//左子树和右子树均为空则为叶子节点if (root-left NULL root-right NULL){return 1;}//叶子节点数等与左右叶子数之和return TreeLeafSize(root-left) TreeLeafSize(root-right);
}9.二叉树第k层节点个数
求第k层节点的个数转换成求左右子树的k-1层的节点个数当k为1 的时候节点数为1
//第K层节点个数
int TreeKLevel(BTNode* root, int k)
{assert(k 0); //层数大于0//空树返回0if (root NULL){return 0;}if (k 1){return 1;}//相对于根是第k层则相对于根是子树的k-1层//换成求子树第k-1层return TreeKLevel(root-left, k - 1) TreeKLevel(root-right, k - 1);}c10.二叉树的高度
树的高度等于左子树的高度和右子树的高度的最大值1
//计算二叉树深度
int TreeHeight(BTNode* root)
{//如果是空树返回0if (root NULL){return 0;}int lret TreeHeight(root-left); //递归计算左子树的深度记为lretint rret TreeHeight(root-right); //递归计算右子树的深度记为rret/*if (lret rret){return lret 1;}else{return rret 1;}*///二叉树的深度为lret和rret的较大者1return lret rret ? lret 1 : rret 1;
}11.在二叉树中查找值为x的节点
我们先在左子树找没有找到再到右子树找都没有找到则返回NULL注意的是上一个节点的返回值将作为下一个节点是否继续找的依据所以我们要用一个指针保存左右子树查找的返回值再进行判断。
// 在二叉树中查找值为x的节点
BTNode* TreeFind(BTNode* root, BTDataType x)
{if (root NULL)return NULL;if (root-data x)return root;// 先去左树找BTNode* lret TreeFind(root-left, x);if (lret)return lret;// 左树没有找到再到右树找BTNode* rret TreeFind(root-right, x);if (rret)return rret;//return TreeFind(root-right, x);// 都找不到则返回空retun NULL;
}12.判断二叉树是否是完全二叉树
我们知道高度为h的完全二叉树前h-1层都是满二叉树最后一层不一定是满二叉树但是最后一层的节点必须是连续的也就是说当完全二叉树遇到空节点的时候后面就不会在出现非空的节点否则就不是完全二叉树
根据上面完全二叉树的性质我们可以利用二叉树的层序遍历来判断二叉树是否是完全二叉树基本思路为对二叉树进行层序遍历不管节点是否为空都入队列当队头的元素为空的时候我们检查队列中的剩余数据是否都是空节点如果含有非空节点则该树就不是完全二叉树。
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(q);if (root)QueuePush(q, root);while (!QueueEmpty(q)){BTNode* front QueueFront(q);if (front NULL)break;QueuePop(q);QueuePush(q, root-left);QueuePush(q, root-right);}// 遇到空以后后面全是空则是完全二叉树// 遇到空以后后面存在非空则不是完全二叉树while (!QueueEmpty(q)){BTNode* front QueueFront(q);if (front ! NULL){QueueDestroy(q);return false;}QueuePop(q);}return true;
}13.销毁二叉树
我们不能直接删除根节点需要采用后续遍历的方式进行依次删除
// 销毁二叉树
void BinaryTreeDestroy(BTNode* root)
{if (root NULL)return;// 通过后续遍历来销毁节点BinaryTreeDestroy(root-left);BinaryTreeDestroy(root-right);// 此处置空不会影响外面需要在外面进行置空free(root);
}四、完整代码
1.BTree.h
#pragma once
#include stdio.h
#include assert.h
#include stdlib.htypedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;//创建二叉树
BTNode* CreateTree();
//二叉树先序遍历
void PreOrder(BTNode* root);
//二叉树中序遍历
void InOrder(BTNode* root);
//二叉树后序遍历
void PostOrder(BTNode* root);
// 二叉树层序遍历
void BinaryTreeLevelOrder(BTNode* root);
//计算二叉树节点个数
int TreeSize(BTNode* root);
//计算二叉树深度
int TreeHeight(BTNode* root);
//第K层节点个数
int TreeKLevel(BTNode* root, int k);
//计算二叉树叶子节点个数
int TreeLeafSize(BTNode* root);
//返回x所在的节点
BTNode* TreeFind(BTNode* root, BTDataType x);
//创建二叉树
BTNode* BTreeCreate(char* a, int* pi);
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
// 销毁二叉树
void BinaryTreeDestroy(BTNode* root);2.BTree.c
#include BTree.h//创建二叉树
BTNode* CreateTree()
{//创建节点BTNode* n1 (BTNode*)malloc(sizeof(BTNode));assert(n1);BTNode* n2 (BTNode*)malloc(sizeof(BTNode));assert(n2);BTNode* n3 (BTNode*)malloc(sizeof(BTNode));assert(n3);BTNode* n4 (BTNode*)malloc(sizeof(BTNode));assert(n4);BTNode* n5 (BTNode*)malloc(sizeof(BTNode));assert(n5);BTNode* n6 (BTNode*)malloc(sizeof(BTNode));assert(n6);BTNode* n7 (BTNode*)malloc(sizeof(BTNode));assert(n7);//链接关系n1-data 1;n2-data 2;n3-data 3;n4-data 4;n5-data 5;n6-data 6;n7-data 7;n1-left n2;n1-right n4;n2-left n3;n2-right NULL;n4-left n5;n4-right n6;n3-left NULL;n3-right NULL;n5-left NULL;n5-right NULL;n6-left NULL;n6-right NULL;n3-right n7;n7-left NULL;n7-right NULL;return n1;
}//二叉树先序遍历
void PreOrder(BTNode* root)
{//如果是空树则返回NULLif (root NULL){printf(NULL );return;}printf(%d , root-data); //访问根节点PreOrder(root-left); //先序遍历左子树PreOrder(root-right); //先序遍历右子树
}//二叉树中序遍历
void InOrder(BTNode* root)
{//如果是空树则返回NULLif (root NULL){//printf(NULL );return;}InOrder(root-left); //中序遍历左子树printf(%d , root-data); //访问根节点//printf(%c , root-data);InOrder(root-right); //中序遍历右子树
}// 二叉树后序遍历
void PostOrder(BTNode* root)
{//如果是空树则返回NULLif (root NULL){printf(NULL );return;}PostOrder(root-left); //后序遍历左子树PostOrder(root-right); //后序遍历右子树printf(%d , root-data); //访问根节点
}// 二叉树层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{Queue q;QueueInit(q);if (root)QueuePush(q, root);while (!QueueEmpty(q)){// 取出队头元素BTNode* front QueueFront(q);QueuePop(root);printf(%c , front-data);// 将队头元素的左右子节点入队列if (front-left)QueuePop(q, front-left);if (front-right)QueuePop(q, front-right);}QueueDestroy(q);
}//int count 0;//定义全局变量导致两次调用返回值不一样//计算二叉树节点个数
int TreeSize(BTNode* root)
{//知易行难不行遍历计数//static int count 0;//static修饰count成为全局变量导致两次返回值不一样// 第一次打印7则第二次打印14//if (root NULL)// return count;// //count;//TreeSize(root-left);//TreeSize(root-right);// // return count;/*if (root NULL){return 0;}int lret TreeSize(root-left);int rret TreeSize(root-right);return TreeSize(root-left) TreeSize(root-right) 1;*//*if (root NULL){return 0;}return TreeSize(root-left) TreeSize(root-right) 1;*///二叉树的节点个数等于左子树的个数右子树的深度1return root NULL ? 0 : TreeSize(root-left) TreeSize(root-right) 1;
}//计算二叉树深度
int TreeHeight(BTNode* root)
{//如果是空树返回0if (root NULL){return 0;}int lret TreeHeight(root-left); //递归计算左子树的深度记为lretint rret TreeHeight(root-right); //递归计算右子树的深度记为rret/*if (lret rret){return lret 1;}else{return rret 1;}*///二叉树的深度为lret和rret的较大者1return lret rret ? lret 1 : rret 1;
}//第K层节点个数
int TreeKLevel(BTNode* root, int k)
{assert(k 0); //层数大于0//空树返回0if (root NULL){return 0;}if (k 1){return 1;}//相对于根是第k层则相对于根是子树的k-1层//换成求子树第k-1层return TreeKLevel(root-left, k - 1) TreeKLevel(root-right, k - 1);}//计算二叉树叶子节点个数
int TreeLeafSize(BTNode* root)
{//空树返回0if (root NULL){return 0;}//左子树和右子树均为空则为叶子节点if (root-left NULL root-right NULL){return 1;}//叶子节点数等与左右叶子数之和return TreeLeafSize(root-left) TreeLeafSize(root-right);
}//返回x所在的节点
BTNode* TreeFind(BTNode* root, BTDataType x)
{//空树返回NULLif (root NULL){return NULL;}//根节点返回root的地址 if (root-data x){return root;}//先在左子树找BTNode* lret TreeFind(root-left, x);if (lret){return lret;}//左子树没找到去右子树找BTNode* rret TreeFind(root-right, x);if (rret){return rret;}//不推荐可读性不强不容易理解//return TreeFind(root-right, x);return NULL;
}BTNode* BTreeCreate(char* a, int* pi)
{//输入字符为‘#’returnif (a[*pi] #){(*pi);return NULL;}//创建新节点BTNode* root (BTNode*)malloc(sizeof(BTNode));//空间未开辟成功退出程序if (root NULL){perror(malloc fail);exit(-1);}//数组的字符赋给根节点root-data a[*pi];(*pi);root-left BTreeCreate(a, pi); //递归创建左子树root-right BTreeCreate(a, pi); //递归创建右子树return root;
}
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(q);if (root)QueuePush(q, root);while (!QueueEmpty(q)){BTNode* front QueueFront(q);if (front NULL)break;QueuePop(q);QueuePush(q, root-left);QueuePush(q, root-right);}// 遇到空以后后面全是空则是完全二叉树// 遇到空以后后面存在非空则不是完全二叉树while (!QueueEmpty(q)){BTNode* front QueueFront(q);if (front ! NULL){QueueDestroy(q);return false;}QueuePop(q);}return true;
}// 销毁二叉树
void BinaryTreeDestroy(BTNode* root)
{if (root NULL)return;// 通过后续遍历来销毁节点BinaryTreeDestroy(root-left);BinaryTreeDestroy(root-right);// 此处置空不会影响外面需要在外面进行置空free(root);
}
3.test.c
#include BTree.hint main()
{//创建二叉树BTNode* root CreateTree();//先序遍历二叉树PreOrder(root);printf(\n);//计算二叉树节点个数printf(Tree size:%d\n, TreeSize(root));printf(Tree size:%d\n, TreeSize(root));//计算二叉树高度printf(Tree Height:%d\n, TreeHeight(root));//计算第k层节点个数printf(Tree KLevel:%d\n, TreeKLevel(root, 1));printf(Tree KLevel:%d\n, TreeKLevel(root, 2));printf(Tree KLevel:%d\n, TreeKLevel(root, 3));printf(Tree KLevel:%d\n, TreeKLevel(root, 4));//查找x所在的节点BTNode* ret TreeFind(root, 7);printf(ret%p\n, ret);printf(retbefore:%d\n, ret-data);//修改x所在的节点的值ret-data * 10;printf(retafter:%d\n, ret-data);//计算二叉树叶子节点个数printf(Tree LeafSize:%d\n, TreeLeafSize(root));//测试创建二叉树//char str[100]; //创建数组//scanf(%s, str); //输入字符//int i 0; //记录数组的下标递归i的值不会改变所以传i的地址//BTNode* root BTreeCreate(str, i);//InOrder(root);return 0;
}4.Queue.h
#pragma once //防止头文件被重复包含//包含头文件
#include stdio.h
#include stdlib.h
#include assert.h
#include stdbool.htypedef char BTDataType;
typedef struct BinaryTree
{BTDataType data;struct BinaryTree* left;struct BinaryTree* right;
}BTNode;//结构和符号的定义
typedef int QDataType; //数据类型重定义//定义队列的一个节点
typedef struct QueueNode
{struct QueueNode* next;QDataType data;
}QNode;typedef struct Queue
{QNode* head; //记录队列的头QNode* tail; //记录队列的尾int size; //记录队列的长度
}Queue;//函数的声明
//初始化队列
void QueueInit(Queue* pq);
//销毁队列
void QueueDestroy(Queue* pq);
//队尾入队列
void QueuePush(Queue* pq, QDataType x);
//对头出队列
void QueuePop(Queue* pq);
//获取对头元素
QDataType QueueFront(Queue* pq);
//获取队尾元素
QDataType QueueBack(Queue* pq);
//判断队列是否为空
bool QueueEmpty(Queue* pq);
//返回队列元素个数
int QueueSize(Queue* pq);5.Queue.c
#include Queue.h//初始化队列
void QueueInit(Queue* pq)
{assert(pq);pq-head pq-tail NULL;pq-size 0;
}//销毁队列
void QueueDestroy(Queue* pq)
{assert(pq);//遍历删除QNode* cur pq-head;while (cur){QNode* del cur;cur cur-next;free(del);}pq-head pq-tail NULL;
}//队尾入队列
void QueuePush(Queue* pq, QDataType x)
{assert(pq);//开辟新节点QNode* newnode (QNode*)malloc(sizeof(QNode));if (newnode NULL){perror(malloc fail);exit(-1);}else{//节点的数据复制为x指针置为空newnode-data x;newnode-next NULL;}//空队列在队列头部if (pq-head NULL){pq-head pq-tail newnode;}else{//尾指针后移pq-tail-next newnode;pq-tail newnode;}pq-size;
}//对头出队列
void QueuePop(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq)); //队列为空时不能出队列//只有一个元素的时候出队列之后头尾指针都置为空if (pq-head-next NULL){free(pq-head);pq-head pq-tail NULL;}else{QNode* del pq-head;pq-head pq-head-next;free(del);del NULL;}pq-size--;
}//获取对头元素
QDataType QueueFront(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq-head-data;
}//获取队尾元素
QDataType QueueBack(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq-tail-data;
}//判断队列是否为空
bool QueueEmpty(Queue* pq)
{assert(pq);return pq-head NULL pq-tail NULL;
}//返回队列元素个数
int QueueSize(Queue* pq)
{assert(pq);/*int count 0;QNode* cur pq-head;while (cur){cur cur-next;count;}return count;*/return pq-size;
}