wordpress ip排行,好看的seo网站,淘宝客怎么建立网站,合肥网站建设搜王道下拉自众多大型语言模型#xff08;LLM#xff09;和高级对话模型发布以来#xff0c;人们已经运用了各种技术来从这些 AI 系统中提取所需的输出。其中一些方法会改变模型的行为来更好地贴近我们的期望#xff0c;而另一些方法则侧重于增强我们查询 LLM 的方式#xff0c;以提…自众多大型语言模型LLM和高级对话模型发布以来人们已经运用了各种技术来从这些 AI 系统中提取所需的输出。其中一些方法会改变模型的行为来更好地贴近我们的期望而另一些方法则侧重于增强我们查询 LLM 的方式以提取更精确和更有关联的信息。
检索增强生成RAG、提示和微调等技术是应用最广泛的。在这篇文章中我们将研究对比这些技术的优缺点。这很重要因为本文将帮助你了解何时该使用这些技术以及如何有效地使用它们。
提示工程
提示是与任何大型语言模型交互的最基本方式。你可以把提示看作是给模型提供的指令。当你使用提示时你会告诉模型你希望它给你反馈什么样的信息。这种方法也被称为提示工程有点像是学习如何提出正确的问题以获得最佳答案的方法。但你能从中获得的东西是有限的这是因为模型只能反馈它从训练中获知的内容。 提示工程的特点是它非常简单。你不需要成为技术专家也能写好提示这对大多数人来说都是个好消息。但由于它的效果很大程度上取决于模型的原始学习水平所以它可能并不总能提供你需要的最新或最具体的信息。当你处理的是一般性的主题或当你只需要一个快速答案而不需要太多细节时提示工程最好用。
优点 易于使用提示易于使用不需要高级技术技能因此可供广大受众使用。 成本效益由于它使用预先训练好的模型因此与微调相比其所涉及的计算成本极低。 灵活性用户可以快速调整提示以探索各种输出而无需重新训练模型。 缺点 不一致模型响应的质量和相关性可能因提示的措辞而有很大差异。 有限的定制能力定制模型响应的能力受限于用户制作有效提示的创造力和技巧。 对模型知识的依赖输出局限在模型在初始训练期间学到的内容上这使得它对于高度专业化或最新的信息需求来说效果不佳。 微 调
微调是指你找来一个语言模型并让它学习一些新的或特殊的东西。可以把它想象成更新手机上的应用程序以获得更好功能的方法。但在微调的情况下应用程序模型需要大量新信息和时间来正确学习各种内容。对于模型来说这有点像是重返校园。 由于微调需要大量的算力和时间因此成本可能很高。但如果你需要语言模型很好地理解某些特定主题那么微调就会很划算。这就像是教模型成为你所感兴趣的领域的专家一样。经过微调后模型可以为你提供更准确、更接近你所需内容的答案。
优点 自定义微调允许广泛的自定义使模型能够生成针对特定领域或风格的响应。 提高准确性通过在专门的数据集上进行训练模型可以产生更准确、更相关的响应。 适应性经过微调的模型可以更好地处理原始训练过程中未涵盖的小众主题或最新信息 缺点 成本微调需要大量计算资源因此比提示工程更昂贵。 技术技能这种方法需要更深入地了解机器学习和语言模型架构。 数据要求有效的微调工作需要大量且精心策划的数据集这类数据集可能很难编译。 检索增强生成RAG
检索增强生成RAG将常见的语言模型与知识库之类的东西混合在一起。当模型需要回答问题时它首先从知识库中查找并收集相关信息然后根据该信息回答问题。模型会快速检查信息库以确保它能给你最好的答案。 RAG 在你需要最新信息或需要比模型最初学习到的内容更广泛的主题答案的情况下特别有用。在设置难度和成本方面它不算高也不算低。它很有用因为它可以帮助语言模型给出新鲜且更详细的答案。但就像微调一样它需要额外的工具和信息才能正常工作。
RAG 系统的成本、速度和响应质量严重依赖于矢量数据库所以这种数据库成为了 RAG 系统中非常重要的一部分。
优点 动态信息通过利用外部数据源RAG 可以提供最新且高度相关的信息。 平衡在提示的简易性和微调的定制能力之间提供了中庸之道。 上下文相关性通过附加的上下文来增强模型的响应从而产生更明智和更细致的输出。 缺点 复杂性RAG 实现起来可能很复杂需要语言模型和检索系统之间做好集成。 资源密集型虽然 RAG 的资源密集程度低于完全微调的方法但它仍然需要相当大的计算能力。 数据依赖性输出的质量在很大程度上取决于检索到的信息的相关性和准确性 提示、微调和 RAG 对比
下面的表格完整对比了提示、微调和检索增强生成方法。此表将帮助你了解不同方法之间的差异并决定哪种方法最适合你的需求。 上表分解了提示、微调和 RAG 三种方法的要点。它应该可以帮助你了解每种方法最适合哪种情况。希望这张表可以帮助你为下一个任务选择正确的工具。
RAG增强 AI 应用程序的最佳选择
RAG 是一种独特的方法它将传统语言模型的强大功能与外部知识库的精确度结合在了一起。这种方法有很多优势因而脱颖而出。在特定情况下相比单独使用提示或微调方法RAG 的优势特别突出。
首先RAG 通过实时检索外部数据来确保其所提供的信息是最新并且高度相关的。这对于需要最新信息的应用程序来说非常重要与新闻相关的查询或快速发展的领域就是典型例子。
其次RAG 在可定制性和资源需求方面提供了一种平衡的方法。与需要大量计算能力的完全微调方法不同RAG 允许更灵活、更节省资源的操作让更多用户和开发人员可以轻松使用它。 最后RAG 的混合特性弥补了 LLM 的广泛生成能力与知识库中可用的特定详细信息之间的差距。在它的帮助下模型不仅会产生相关且详细的输出而且还具有丰富的上下文。
优化、可扩展且经济高效的矢量数据库解决方案可以极大地增强 RAG 应用程序的性能和功能。这就是为什么你需要 MyScale这是一个基于 SQL 的矢量数据库它可以与主要的 AI 框架和语言模型平台如 OpenAI、Langchain、Langchain JS/TS 和 LlamaIndex顺利集成。使用 MyScale 后RAG 可以变得更快、更准确这对于寻求最佳结果的用户来说非常有用。
小 结
总之你应该选择提示工程、微调还是检索增强生成方法将取决于你项目的具体要求、可用资源和期望的结果。每种方法都有其独特的优势和局限性。提示是易用且经济高效的但提供的定制能力较少。微调以更高的成本和复杂性提供充分的可定制性。RAG 实现了某种平衡提供最新且与特定领域相关的信息复杂度适中。