免费发群二维码的网站,wordpress wp editor,东莞企业建站申请多少钱,网站建设新手教程视频教程2 词条查询
所谓词条查询#xff0c;也就是ES不会对查询条件进行分词处理#xff0c;只有当词条和查询字符串完全匹配时#xff0c;才会被查询到。
#xfeff;
2.1 等值查询-term
等值查询#xff0c;即筛选出一个字段等于特定值的所有记录。
#xfeff;
SQL也就是ES不会对查询条件进行分词处理只有当词条和查询字符串完全匹配时才会被查询到。 2.1 等值查询-term
等值查询即筛选出一个字段等于特定值的所有记录。 SQL select * from person where name 张无忌;
而使用ES查询语句却很不一样注意查询字段带上keyword GET /person/_search
{
query: {
term: {
name.keyword: {
value: 张无忌,
boost: 1.0
}
}
}
}
ElasticSearch 5.0以后string类型有重大变更移除了string类型string字段被拆分成两种新的数据类型: text用于全文搜索的而keyword用于关键词搜索。 查询结果 {
took : 0,
timed_out : false,
_shards : { // 分片信息
total : 1, // 总计分片数
successful : 1, // 查询成功的分片数
skipped : 0, // 跳过查询的分片数
failed : 0 // 查询失败的分片数
},
hits : { // 命中结果
total : {
value : 1, // 数量
relation : eq // 关系等于
},
max_score : 2.8526313, // 最高分数
hits : [
{
_index : person, // 索引
_type : _doc, // 类型
_id : 1,
_score : 2.8526313,
_source : {
address : 光明顶,
modifyTime : 2021-06-29 16:48:56,
createTime : 2021-05-14 16:50:33,
sect : 明教,
sex : 男,
skill : 九阳神功,
name : 张无忌,
id : 1,
power : 99,
age : 18
}
}
]
}
} Java 中构造 ES 请求的方式后续例子中只保留 SearchSourceBuilder 的构建语句 /**
* term精确查询
*
* throws IOException
*/
Autowired
private RestHighLevelClient client; Test
public void queryTerm() throws IOException {
// 根据索引创建查询请求
SearchRequest searchRequest new SearchRequest(person);
SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.termQuery(name.keyword, 张无忌));
System.out.println(searchSourceBuilder searchSourceBuilder);
searchRequest.source(searchSourceBuilder);
SearchResponse response client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(JSONObject.toJSON(response));
} 仔细观察查询结果会发现ES查询结果中会带有_score这一项ES会根据结果匹配程度进行评分。打分是会耗费性能的如果确认自己的查询不需要评分就设置查询语句关闭评分 GET /person/_search
{
query: {
constant_score: {
filter: {
term: {
sect.keyword: {
value: 张无忌,
boost: 1.0
}
}
},
boost: 1.0
}
}
} Java构建查询语句 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 这样构造的查询条件将不进行score计算从而提高查询效率
searchSourceBuilder.query(QueryBuilders.constantScoreQuery(QueryBuilders.termQuery(sect.keyword, 明教)));
2.2 多值查询-terms
多条件查询类似 Mysql 里的IN 查询例如 select * from persons where sect in(明教,武当派);
ES查询语句 GET /person/_search
{
query: {
terms: {
sect.keyword: [
明教,
武当派
],
boost: 1.0
}
}
}
Java 实现 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.termsQuery(sect.keyword, Arrays.asList(明教, 武当派)));
}
2.3 范围查询-range
范围查询即查询某字段在特定区间的记录。 SQL: select * from pesons where age between 18 and 22;
ES查询语句 GET /person/_search
{
query: {
range: {
age: {
from: 10,
to: 20,
include_lower: true,
include_upper: true,
boost: 1.0
}
}
}
Java构建查询条件 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.rangeQuery(age).gte(10).lte(30));
}
2.4 前缀查询-prefix
前缀查询类似于SQL中的模糊查询。 SQL select * from persons where sect like 武当%;
ES查询语句 {
query: {
prefix: {
sect.keyword: {
value: 武当,
boost: 1.0
}
}
}
}
Java构建查询条件 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.prefixQuery(sect.keyword,武当));
}
2.5 通配符查询-wildcard
通配符查询与前缀查询类似都属于模糊查询的范畴但通配符显然功能更强。 SQL: select * from persons where name like 张%忌;
ES查询语句 {
query: {
wildcard: {
sect.keyword: {
wildcard: 张*忌,
boost: 1.0
}
}
}
}
Java构建查询条件 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.wildcardQuery(sect.keyword,张*忌));
03 负责查询
前面的例子都是单个条件查询在实际应用中我们很有可能会过滤多个值或字段。先看一个简单的例子 select * from persons where sex 女 and sect 明教;
这样的多条件等值查询就要借用到组合过滤器了其查询语句是 {
query: {
bool: {
must: [
{
term: {
sex: {
value: 女,
boost: 1.0
}
}
},
{
term: {
sect.keywords: {
value: 明教,
boost: 1.0
}
}
}
],
adjust_pure_negative: true,
boost: 1.0
}
}
} Java构造查询语句 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery(sex, 女))
.must(QueryBuilders.termQuery(sect.keyword, 明教))
);
3.1 布尔查询
布尔过滤器bool filter属于复合过滤器compound filter的一种 可以接受多个其他过滤器作为参数并将这些过滤器结合成各式各样的布尔逻辑组合。 bool 过滤器下可以有4种子条件可以任选其中任意一个或多个。filter是比较特殊的这里先不说。 {
bool : {
must : [],
should : [],
must_not : [],
}
}
must所有的语句都必须匹配与 ‘’ 等价。
must_not所有的语句都不能匹配与 ‘!’ 或 not in 等价。
should至少有n个语句要匹配n由参数控制。
精度控制 所有 must 语句必须匹配所有 must_not 语句都必须不匹配但有多少 should 语句应该匹配呢默认情况下没有 should 语句是必须匹配的只有一个例外那就是当没有 must 语句的时候至少有一个 should 语句必须匹配。 我们可以通过 minimum_should_match 参数控制需要匹配的 should 语句的数量它既可以是一个绝对的数字又可以是个百分比 GET /person/_search
{
query: {
bool: {
must: [
{
term: {
sex: {
value: 女,
boost: 1.0
}
}
}
],
should: [
{
term: {
address.keyword: {
value: 峨眉山,
boost: 1.0
}
}
},
{
term: {
sect.keyword: {
value: 明教,
boost: 1.0
}
}
}
],
adjust_pure_negative: true,
minimum_should_match: 1,
boost: 1.0
}
}
} Java构建查询语句 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery(sex, 女))
.should(QueryBuilders.termQuery(address.word, 峨眉山))
.should(QueryBuilders.termQuery(sect.keyword, 明教))
.minimumShouldMatch(1)
);
最后看一个复杂些的例子将bool的各子句联合使用 select * from persons where sex 女 and age between 30 and 40 and sect ! 明教 and (address 峨眉山 OR skill 暗器)
用 Elasticsearch 来表示上面的 SQL 例子 GET /person/_search
{
query: {
bool: {
must: [
{
term: {
sex: {
value: 女,
boost: 1.0
}
}
},
{
range: {
age: {
from: 30,
to: 40,
include_lower: true,
include_upper: true,
boost: 1.0
}
}
}
],
must_not: [
{
term: {
sect.keyword: {
value: 明教,
boost: 1.0
}
}
}
],
should: [
{
term: {
address.keyword: {
value: 峨眉山,
boost: 1.0
}
}
},
{
term: {
skill.keyword: {
value: 暗器,
boost: 1.0
}
}
}
],
adjust_pure_negative: true,
minimum_should_match: 1,
boost: 1.0
}
}
} 用Java构建这个查询条件 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
BoolQueryBuilder boolQueryBuilder QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery(sex, 女))
.must(QueryBuilders.rangeQuery(age).gte(30).lte(40))
.mustNot(QueryBuilders.termQuery(sect.keyword, 明教))
.should(QueryBuilders.termQuery(address.keyword, 峨眉山))
.should(QueryBuilders.rangeQuery(power.keyword).gte(50).lte(80))
.minimumShouldMatch(1); // 设置should至少需要满足几个条件 // 将BoolQueryBuilder构建到SearchSourceBuilder中
searchSourceBuilder.query(boolQueryBuilder);
3.2 Filter查询
query和filter的区别query查询的时候会先比较查询条件然后计算分值最后返回文档结果而filter是先判断是否满足查询条件如果不满足会缓存查询结果记录该文档不满足结果满足的话就直接缓存结果filter不会对结果进行评分能够提高查询效率。 filter的使用方式比较多样下面用几个例子演示一下。 方式一单独使用 {
query: {
bool: {
filter: [
{
term: {
sex: {
value: 男,
boost: 1.0
}
}
}
],
adjust_pure_negative: true,
boost: 1.0
}
}
} 单独使用时filter与must基本一样不同的是filter不计算评分效率更高。 Java构建查询语句 SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.filter(QueryBuilders.termQuery(sex, 男))
);
方式二和must、must_not同级相当于子查询 select * from (select * from persons where sect 明教)) a where sex 女;
ES查询语句 {
query: {
bool: {
must: [
{
term: {
sect.keyword: {
value: 明教,
boost: 1.0
}
}
}
],
filter: [
{
term: {
sex: {
value: 女,
boost: 1.0
}
}
}
],
adjust_pure_negative: true,
boost: 1.0
}
}
} Java SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery(sect.keyword, 明教))
.filter(QueryBuilders.termQuery(sex, 女))
);
方式三将must、must_not置于filter下这种方式是最常用的 {
query: {
bool: {
filter: [
{
bool: {
must: [
{
term: {
sect.keyword: {
value: 明教,
boost: 1.0
}
}
},
{
range: {
age: {
from: 20,
to: 35,
include_lower: true,
include_upper: true,
boost: 1.0
}
}
}
],
must_not: [
{
term: {
sex.keyword: {
value: 女,
boost: 1.0
}
}
}
],
adjust_pure_negative: true,
boost: 1.0
}
}
],
adjust_pure_negative: true,
boost: 1.0
}
}
} Java: SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.filter(QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery(sect.keyword, 明教))
.must(QueryBuilders.rangeQuery(age).gte(20).lte(35))
.mustNot(QueryBuilders.termQuery(sex.keyword, 女)))
);
04 聚合查询
接下来我们将用一些案例演示ES聚合查询。 4.1 最值、平均值、求和
案例查询最大年龄、最小年龄、平均年龄。 SQL select max(age) from persons;
ES GET /person/_search
{
aggregations: {
max_age: {
max: {
field: age
}
}
}
}
Java Autowired
private RestHighLevelClient client; Test
public void maxQueryTest() throws IOException {
// 聚合查询条件
AggregationBuilder aggBuilder AggregationBuilders.max(max_age).field(age);
SearchRequest searchRequest new SearchRequest(person);
SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 将聚合查询条件构建到SearchSourceBuilder中
searchSourceBuilder.aggregation(aggBuilder);
System.out.println(searchSourceBuilder----- searchSourceBuilder); searchRequest.source(searchSourceBuilder);
// 执行查询获取SearchResponse
SearchResponse response client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(JSONObject.toJSON(response));
} 使用聚合查询结果中默认只会返回10条文档数据当然我们关心的是聚合的结果而非文档。返回多少条数据可以自主控制 GET /person/_search
{
size: 20,
aggregations: {
max_age: {
max: {
field: age
}
}
}
}
而Java中只需增加下面一条语句即可 searchSourceBuilder.size(20);
与max类似其他统计查询也很简单 AggregationBuilder minBuilder AggregationBuilders.min(min_age).field(age);
AggregationBuilder avgBuilder AggregationBuilders.avg(min_age).field(age);
AggregationBuilder sumBuilder AggregationBuilders.sum(min_age).field(age);
AggregationBuilder countBuilder AggregationBuilders.count(min_age).field(age);
4.2 去重查询
案例查询一共有多少个门派。 SQL select count(distinct sect) from persons;
ES {
aggregations: {
sect_count: {
cardinality: {
field: sect.keyword
}
}
}
}
Java Test
public void cardinalityQueryTest() throws IOException {
// 创建某个索引的request
SearchRequest searchRequest new SearchRequest(person);
// 查询条件
SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 聚合查询
AggregationBuilder aggBuilder AggregationBuilders.cardinality(sect_count).field(sect.keyword);
searchSourceBuilder.size(0);
// 将聚合查询构建到查询条件中
searchSourceBuilder.aggregation(aggBuilder);
System.out.println(searchSourceBuilder----- searchSourceBuilder); searchRequest.source(searchSourceBuilder);
// 执行查询获取结果
SearchResponse response client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(JSONObject.toJSON(response));
} 4.3 分组聚合
4.3.1 单条件分组
案例查询每个门派的人数 SQL select sect,count(id) from mytest.persons group by sect;
ES {
size: 0,
aggregations: {
sect_count: {
terms: {
field: sect.keyword,
size: 10,
min_doc_count: 1,
shard_min_doc_count: 0,
show_term_doc_count_error: false,
order: [
{
_count: desc
},
{
_key: asc
}
]
}
}
}
} Java SearchRequest searchRequest new SearchRequest(person);
SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
searchSourceBuilder.size(0);
// 按sect分组
AggregationBuilder aggBuilder AggregationBuilders.terms(sect_count).field(sect.keyword);
searchSourceBuilder.aggregation(aggBuilder);
4.3.2 多条件分组
案例查询每个门派各有多少个男性和女性 SQL select sect,sex,count(id) from mytest.persons group by sect,sex;
ES {
aggregations: {
sect_count: {
terms: {
field: sect.keyword,
size: 10
},
aggregations: {
sex_count: {
terms: {
field: sex.keyword,
size: 10
}
}
}
}
}
} 4.4 过滤聚合
前面所有聚合的例子请求都省略了 query 整个请求只不过是一个聚合。这意味着我们对全部数据进行了聚合但现实应用中我们常常对特定范围的数据进行聚合例如下例。 案例查询明教中的最大年龄。这涉及到聚合与条件查询一起使用。 SQL select max(age) from mytest.persons where sect 明教;
ES GET /person/_search
{
query: {
term: {
sect.keyword: {
value: 明教,
boost: 1.0
}
}
},
aggregations: {
max_age: {
max: {
field: age
}
}
}
} Java SearchRequest searchRequest new SearchRequest(person);
SearchSourceBuilder searchSourceBuilder new SearchSourceBuilder();
// 聚合查询条件
AggregationBuilder maxBuilder AggregationBuilders.max(max_age).field(age);
// 等值查询
searchSourceBuilder.query(QueryBuilders.termQuery(sect.keyword, 明教));
searchSourceBuilder.aggregation(maxBuilder);
另外还有一些更复杂的查询例子。 案例查询0-2021-4041-6061以上的各有多少人。 SQL select
sum(case when age20 then 1 else 0 end) ageGroup1,
sum(case when age 20 and age 40 then 1 else 0 end) ageGroup2,
sum(case when age 40 and age 60 then 1 else 0 end) ageGroup3,
sum(case when age 60 and age 200 then 1 else 0 end) ageGroup4
from
mytest.persons;
ES {
size: 0,
aggregations: {
age_avg: {
range: {
field: age,
ranges: [
{
from: 0.0,
to: 20.0
},
{
from: 21.0,
to: 40.0
},
{
from: 41.0,
to: 60.0
},
{
from: 61.0,
to: 200.0
}
],
keyed: false
}
}
}
} 查询结果 aggregations : {
age_avg : {
buckets : [
{
key : 0.0-20.0,
from : 0.0,
to : 20.0,
doc_count : 3
},
{
key : 21.0-40.0,
from : 21.0,
to : 40.0,
doc_count : 13
},
{
key : 41.0-60.0,
from : 41.0,
to : 60.0,
doc_count : 4
},
{
key : 61.0-200.0,
from : 61.0,
to : 200.0,
doc_count : 1
}
]
}
} 原文链接https://blog.csdn.net/wang20010104/article/details/130482294