当前位置: 首页 > news >正文

珠海公司网站制作化妆品网站建设实施背景

珠海公司网站制作,化妆品网站建设实施背景,wordpress4.7不支持tag,百度seo提交clickhouse 新特性#xff1a; 从clickhouse 22.3至最新的版本24.3.2.23#xff0c;clickhouse在快速发展中#xff0c;每个版本都增加了一些新的特性#xff0c;在数据写入、查询方面都有性能加速。 本文根据clickhouse blog中的clickhouse release blog中#xff0c;学…clickhouse 新特性 从clickhouse 22.3至最新的版本24.3.2.23clickhouse在快速发展中每个版本都增加了一些新的特性在数据写入、查询方面都有性能加速。 本文根据clickhouse blog中的clickhouse release blog中学习并梳理了一些在实际工作中可能用到的新特性。 以下是如何基于docker如果试用这些新性 docker run -d --namech -p 8123:8123 -p 9000:9000 -p 9009:9009 --ulimit nofile262144:262144 -v D:/ch/latest/external:/external:rw -v chlatest:/var/lib/clickhouse:rw -v D:/ch/latest/logs:/var/log/clickhouse-server:rw -v D:/ch/latest/etc/clickhouse-server:/etc/clickhouse-server:rw clickhouse/clickhouse-server:24.3.2.23docker exec -it bashclickhouse-client --format_csv_delimiter,transform函数 进行字典替换 transform(x, array_from, array_to, default) transform(T, Array(T), Array(U), U) - U transform(x, array_from, array_to)UK-house-price-dataset.csv CREATE TABLE uk_price_paid (price UInt32,date Date,postcode1 LowCardinality(String),postcode2 LowCardinality(String),type Enum8(terraced 1, semi-detached 2, detached 3, flat 4, other 0),is_new UInt8,duration Enum8(freehold 1, leasehold 2, unknown 0),addr1 String,addr2 String,street LowCardinality(String),locality LowCardinality(String),town LowCardinality(String),district LowCardinality(String),county LowCardinality(String) ) ENGINE MergeTree ORDER BY (postcode1, postcode2, addr1, addr2);INSERT INTO uk_price_paid WITHsplitByChar( , postcode) AS p SELECTtoUInt32(price_string) AS price,parseDateTimeBestEffortUS(time) AS date,p[1] AS postcode1,p[2] AS postcode2,transform(a, [T, S, D, F, O], [terraced, semi-detached, detached, flat, other]) AS type,b Y AS is_new,transform(c, [F, L, U], [freehold, leasehold, unknown]) AS duration, addr1, addr2, street, locality, town, district, county FROM file(UK-house-price-dataset.csv,CSV,uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String );SELECT transform(number, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [zero, one, two, three, four, five, six, seven, eight, nine], NULL) AS numbers FROM system.numbers LIMIT 10读取文件 可以自动识别文件的类型推荐字段类型 SELECT * FROM ( WITHsplitByChar( , postcode) AS p SELECTtoUInt32(price_string) AS price,parseDateTimeBestEffortUS(time) AS date,p[1] AS postcode1,p[2] AS postcode2,transform(a, [T, S, D, F, O], [terraced, semi-detached, detached, flat, other]) AS type,b Y AS is_new,transform(c, [F, L, U], [freehold, leasehold, unknown]) AS duration, addr1, addr2, street, locality, town, district, county FROM file(UK-house-price-dataset.csv,CSV,uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String ) SETTINGS format_csv_delimiter, ) LIMIT 2; 自定义函数 根据需要编写自定义函数 CREATE OR REPLACE TABLE line_changes (version UInt32,line_change_type Enum(Add 1, Delete 2, Modify 3),line_number UInt32,line_content String,time datetime default now() ) ENGINE MergeTree ORDER BY time;INSERT INTO default.line_changes (version,line_change_type,line_number,line_content) VALUES (1, Add , 1, ClickHouse provides SQL), (2, Add , 2, with improvements), (3, Add , 3, that makes it more friendly for analytical tasks.), (4, Add , 2, with many extensions), (5, Modify, 3, and powerful improvements), (6, Delete, 1, ), (7, Add , 1, ClickHouse provides a superset of SQL);-- add a string (str) into an array (arr) at a specific position (pos) CREATE OR REPLACE FUNCTION add AS (arr, pos, str) - arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos));-- delete the element at a specific position (pos) from an array (arr) CREATE OR REPLACE FUNCTION delete AS (arr, pos) - arrayConcat(arraySlice(arr, 1, pos-1), arraySlice(arr, pos1));-- replace the element at a specific position (pos) in an array (arr) CREATE OR REPLACE FUNCTION modify AS (arr, pos, str) - arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos1));arrayFold SELECT arrayFold((acc, v) - (acc v), [10, 20, 30], 0::UInt64) AS sum;CREATE OR REPLACE VIEW text_version AS WITH T1 AS (SELECT arrayZip(groupArray(line_change_type),groupArray(line_number),groupArray(line_content)) as line_opsFROM (SELECT * FROM line_changes WHERE version {version:UInt32} ORDER BY version ASC) ) SELECT arrayJoin(arrayFold((acc, v) - if(v.change_type Add, add(acc, v.line_nr, v.content),if(v.change_type Delete, delete(acc, v.line_nr),if(v.change_type Modify, modify(acc, v.line_nr, v.content), []))),line_ops::Array(Tuple(change_type String, line_nr UInt32, content String)),[]::Array(String))) as lines FROM T1;SELECT * FROM text_version(version 3);Parallel window functions 窗口函数采用并行计算性能大幅提升 SELECTcountry,day,max(tempAvg) AS temperature,avg(temperature) OVER (PARTITION BY country ORDER BY day ASC ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS moving_avg_temp FROM noaa WHERE country ! GROUP BYcountry,date AS day ORDER BYcountry ASC,day ASCFINAL 基于FINAL及enable_vertical_final,在如下引擎 ReplacingMergeTree、 AggregatingMergeTree引擎中可以快速查询到最新的数据 SELECTpostcode1,formatReadableQuantity(avg(price)) FROM uk_property_offers FINAL GROUP BY postcode1 ORDER BY avg(price) DESC LIMIT 3;SELECTpostcode1,formatReadableQuantity(avg(price)) FROM uk_property_offers GROUP BY postcode1 ORDER BY avg(price) DESC LIMIT 3 SETTINGS enable_vertical_final 1;Variant Type SET allow_experimental_variant_type1, use_variant_as_common_type 1;SELECTmap(Hello, 1, World, Mark) AS x,toTypeName(x) AS type FORMAT Vertical;SELECTarrayJoin([1, true, 3.4, Mark]) AS value,toTypeName(value)Row 1: ────── x: {Hello:1,World:Mark} type: Map(String, Variant(String, UInt8))┌─value─┬─toTypeName(value)─────────────────────┐ 1. │ true │ Variant(Bool, Float64, String, UInt8) │ 2. │ true │ Variant(Bool, Float64, String, UInt8) │ 3. │ 3.4 │ Variant(Bool, Float64, String, UInt8) │ 4. │ Mark │ Variant(Bool, Float64, String, UInt8) │└───────┴───────────────────────────────────────┘字符相似性函数 byteHammingDistance the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming. “karolin” and “kathrin” is 3.“karolin” and “kerstin” is 3.“kathrin” and “kerstin” is 4.0000 and 1111 is 4.2173896 and 2233796 is 3. editDistancea way of quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other. damerauLevenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau–Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other. jaroWinklerSimilarity: a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric levenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau–Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other. https://clickhouse.com/docs/en/sql-reference/functions/string-functions#dameraulevenshteindistance CREATE TABLE domains (domain String,rank Float64 ) ENGINE MergeTree ORDER BY domain;INSERT INTO domains SELECTc2 AS domain,1 / c1 AS rank FROM url(domains.csv, CSV);SELECTdomain,levenshteinDistance(domain, facebook.com) AS d1,damerauLevenshteinDistance(domain, facebook.com) AS d2,jaroSimilarity(domain, facebook.com) AS d3,jaroWinklerSimilarity(domain, facebook.com) AS d4 FROM domains ORDER BY d1 ASC LIMIT 10 Query id: 6f499f27-8274-4787-819a-b510322bdce3┌─domain────────┬─d1─┬─d2─┬─────────────────d3─┬─────────────────d4─┐1. │ facebook.com │ 0 │ 0 │ 1 │ 1 │2. │ facebonk.com │ 1 │ 1 │ 0.8838383838383838 │ 0.9303030303030303 │3. │ fabebook.com │ 1 │ 1 │ 0.914141414141414 │ 0.9313131313131312 │4. │ facabook.com │ 1 │ 1 │ 0.9444444444444443 │ 0.961111111111111 │5. │ facobook.com │ 1 │ 1 │ 0.8535353535353535 │ 0.8974747474747474 │6. │ facebook1.com │ 1 │ 1 │ 0.9743589743589745 │ 0.9846153846153847 │7. │ faceook.com │ 1 │ 1 │ 0.9722222222222221 │ 0.9833333333333333 │8. │ faacebook.com │ 1 │ 1 │ 0.9743589743589745 │ 0.9794871794871796 │9. │ faceboock.com │ 1 │ 1 │ 0.9326923076923077 │ 0.9596153846153846 │ 10. │ facebool.com │ 1 │ 1 │ 0.9444444444444443 │ 0.9666666666666666 │└───────────────┴────┴────┴────────────────────┴────────────────────┘Vectorized distance functions 可以作为向量数据库使用支持L2,cosineDistance,IP三种向量相似度的度量方法 https://clickhouse.com/blog/clickhouse-release-24-02 WITH dog AS search_term, (SELECT vectorFROM gloveWHERE word search_termLIMIT 1 ) AS target_vector SELECT word, cosineDistance(vector, target_vector) AS score FROM glove WHERE lower(word) ! lower(search_term) ORDER BY score ASC LIMIT 5;WITHdog AS search_term,(SELECT vectorFROM gloveWHERE word search_termLIMIT 1) AS target_vector SELECTword,1 - dotProduct(vector, target_vector) AS score FROM glove WHERE lower(word) ! lower(search_term) ORDER BY score ASC LIMIT 5;Adaptive asynchronous inserts Asynchronous inserts shift data batching from the client side to the server side: data from insert queries is inserted into a buffer first and then written to the database storage later or asynchronously respectively.
http://www.dnsts.com.cn/news/26019.html

相关文章:

  • 东莞网站建设设公司网页设计培训课程
  • 方正隶变简体可以做网站用么成都优化官网公司
  • 卖产品怎么做网站山西省建设工程招投标监督网站
  • ICP备案域名网站石灰土做击实检测网站怎么填
  • 网上购物网站建设公司wordpress导航栏二级层自定义
  • 婚纱摄影网站论文深圳网络营销的推广
  • 网站运营 策划 推广 维护动漫设计与制作属于什么专业大类
  • 商城网站开发多少钱厦门网站建设服务
  • 瑶海区网站建设公司xiamiplayer for wordpress
  • 太原在线制作网站什么叫子网站
  • 铜陵app网站做招聘东莞疾控最新提醒
  • 百度推广免费建站网站前端建设需要学会什么
  • 免费asp网站空间马关网站建设
  • 重庆短视频培训网站关键词优化效果
  • 江西省新的建设厅三类人员网站视频综合平台是什么
  • 网站建设升级三分钟做网站
  • 杭州网站模板做免费网站教程
  • 做最最优秀的视频网站有哪些优秀网站模板下载
  • 门户网站开发语言郑州网站开发的公司
  • 男人和女人做哪个网站我想要个网站
  • 分析网站的网站建筑工程是干嘛的
  • 定制企业网站开发公司外包公司上门催债是合法的吗
  • 做网站会什么软件dw网页制作教程2020
  • 专业定制网站建设团队搜索推广账户优化
  • 利用技术搭建网站做网站代理wordpress怎么破解
  • 梧州建设厅官方网站西安到北京火车票查询
  • 从零开始网站建设大连房产网
  • 如何建立属于个人网站北京建设网站制作
  • 惠州城乡规划建设局网站天津市建设工程造价管理协会网站
  • 有什么好的网站semi是什么意思