东莞做网站哪个公司好,开淘宝网店,网站如何维护,网站如何做直播t分布理论基础
t分布也称Student’s t-distribution#xff0c;主要出现在小样本统计推断中#xff0c;特别是当样本量较小且总体标准差未知时#xff0c;用于估计正态分布的均值。其定义基于正态分布和 X 2 X^{2} X2分布#xff08;卡方分布#xff09;。如果随机变量X服…t分布理论基础
t分布也称Student’s t-distribution主要出现在小样本统计推断中特别是当样本量较小且总体标准差未知时用于估计正态分布的均值。其定义基于正态分布和 X 2 X^{2} X2分布卡方分布。如果随机变量X服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)而 Y Y Y服从自由度为 n n n的卡方分布且 X X X与 Y Y Y相互独立那么变量 T Y n T \sqrt{\frac{Y}{n}} TnY 服从自由度( v v v)为 n n n的 t t t分布,其形状会随着自由度的变化而变化,t分布的形状会随自由度的变化而变化当自由度较小时t分布曲线较为平坦且尾部较高随着自由度的增加t分布曲线逐渐接近正态分布曲线。 通常在大样本且假设总体标准差是已知的情况下使用正态分布在小样本且总体标准差未知的情况下使用 t t t分布特别是在进行假设检验和估计总体均值时。 t t t分布计算公式 T X ˉ − μ S n . T \sqrt{\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}}. Tn SXˉ−μ . 其中: X ˉ \bar{X} Xˉ:样本均值; μ \mu μ:假设的总体均值; S S S:样本标准差; n n n:样本大小.
t检验理论基础 t t t检验利用 t t t分布的性质来判断样本均值之间的差异是否显著, t t t检验是一种统计假设检验方法它利用t分布理论来推断差异发生的概率从而比较两个平均数的差异是否显著。t检验通常用于检验样本均值与某个已知值或两个样本均值间是否存在显著差异的统计方法在进行 t t t检验时会计算出一个 t t t统计量该统计量服从 t t t分布。 单样本t检验 用于检验单个样本的均值是否与已知的某个值存在显著差异 t x ˉ − μ 0 s / n . t \frac{\bar{x} - \mu_0}{s/\sqrt{n}}. ts/n xˉ−μ0. 其中: x ˉ \bar{x} xˉ是样本均值 μ 0 \mu_0 μ0是假设的总体均值 s s s是样本标准差 n n n是样本量。
双样本t检验 用于检验两个独立样本的均值是否存在显著差异。 t x ˉ 1 − x ˉ 2 s 1 2 n 1 s 2 2 n 2 . t \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} \frac{s_2^2}{n_2}}}. tn1s12n2s22 xˉ1−xˉ2. 其中: x ˉ 1 \bar{x}_{1} xˉ1、 x ˉ 2 \bar{x}_{2} xˉ2:两个样本的均值; s 1 、 s_{1}、 s1、s_{2}$:两个样本的标准差; n 1 n_{1} n1、 n 2 n_{2} n2分别是两个样本的样本量。
配对样本t检验 用于检验两个相关样本同一组对象在不同条件下的测量值。 t d ˉ − μ d s d / n . t \frac{\bar{d} - \mu_d}{s_d/\sqrt{n}}. tsd/n dˉ−μd. 其中: d ˉ \bar{d} dˉ:差值的均值; μ d \mu_d μd:假设的差值均值通常为0; s d s_d sd:差值的标准差; n n n:配对数据的数量。
R语言实现
使用R语言绘制 t t t分布曲线图
# 设置自由度
df - 5 curve(dt(x, df), from -5, to 5, xlab t值, ylab 概率密度, main paste(t分布曲线图 (df , df, )), col blue, lwd 2)
grid(colgray, ltydotted)
abline(v0, colgray)
abline(h0, colgray)
polygon(c(-5, seq(-5, 5, length200), 5), c(0, dt(seq(-5, 5, length200), df), 0), collightblue, borderNA)生成图形 t t t分布单尾曲线图
df - 5 # t 0
curve(dt(x, df), from 0, to 5, xlab t值, ylab 概率密度, main paste(t分布单尾曲线图 (df , df, )), col blue, lwd 2, xlim c(0, 5))
grid(col gray, lty dotted)
polygon(c(0, seq(0, 5, length 200), 5), c(0, dt(seq(0, 5, length 200), df), 0), col lightblue, border NA)t t t分布双尾曲线图
df - 5 curve(dt(x, df), from -5, to 5, xlab t值, ylab 概率密度, main paste(t分布双尾曲线图 (df , df, )), col blue, lwd 2)
grid(col gray, lty dotted)
# t -2
polygon(c(-5, seq(-5, -2, length 200), -2), c(0, dt(seq(-5, -2, length 200), df), 0), col blue, border NA)
polygon(c(2, seq(2, 5, length 200), 5), c(0, dt(seq(2, 5, length 200), df), 0), col blue, border NA)单样品t检验
单样品t检验用于检验单个样本的均值与已知的某个值通常是理论值或标准值是否有显著差异。
# 检验数据的均值是否与某个已知值比如10有显著差异
data - c(9.8, 10.2, 9.9, 10.1, 10.0, 9.7, 10.3)print(t.test(data, mu 10))输出 One Sample t-testdata: data
t 0, df 6, p-value 1
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:9.80021 10.19979
sample estimates:
mean of x 10 根据输出的报告可以看出 t值0样本均值与假设的均值在这里是10之间没有差异。 自由度6对于单样本t检验 d f n − 1 df n - 1 dfn−1 n n n是样本数量。 p值1不能拒绝样本均值与10没有显著差异的原假设。 置信区间95%。
双样品t检验 用于比较两个独立样本的均值是否存在显著差异。
# 现有两组独立的数据比较这两组数据的均值是否有显著差异
data1 - c(9.8, 10.2, 9.9, 10.1, 10.0)
data2 - c(9.5, 9.6, 9.7, 9.9, 9.8, 10.0, 9.7, 9.8)print(t.test(data1, data2))输出 Welch Two Sample t-testdata: data1 and data2
t 2.7584, df 8.7335, p-value 0.02279
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:0.04401691 0.45598309
sample estimates:
mean of x mean of y 10.00 9.75 根据输出的报告可以看出 t值2.7584在双样本t检验中t值用于衡量两组数据的均值之间的差异相对于它们的合并标准误差来说是否显著。 自由度8.7335对于双样本t检验使用Welch公式对两个样本的大小和方差进行调整计算得出。 p值0.02279这小于常用的显著性水平0.05两组数据的均值存在显著差异。 置信区间95%。 根据R语言的输出报告显示可以拒绝两组数据均值相同的原假设。
配对样品t检验
配对样品t检验用于比较同一组观测对象在不同条件下的测量值是否存在显著差异。
# 现有一组观测对象在两种不同条件下的测量值检验这两种条件下测量值的均值是否有显著差异
data1 - c(5.1, 5.5, 5.3, 5.6, 5.4)
data2 - c(4.8, 5.0, 5.2, 5.4, 5.1)print(t.test(data2, data1, paired TRUE))输出
Paired t-testdata: data2 and data1
t -4.2212, df 4, p-value 0.01347
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:-0.46416853 -0.09583147
sample estimates:
mean difference -0.28 t值-4.2212在配对t检验中t值用于衡量配对观测值之间的差异是否显著第一组数据的均值小于第二组。 自由度4。 p值0.01347由于p值小于常用的显著性水平0.05我们可以拒绝两组数据的均值差异为0的原假设认为两组数据的均值存在显著差异。 置信区间95%对于两组数据的均值差异有95%的信心认为这个差异在-0.46416853到-0.09583147之间。 样本估计-0.28。配对数据中计算出的实际均值差异。