当前位置: 首页 > news >正文

四川建设厅网站招聘做网站的时候说需求的专业术语

四川建设厅网站招聘,做网站的时候说需求的专业术语,小雨wordpress,无锡网站制作哪家值得信赖主要思路#xff1a; 对于唐诗生成来说#xff0c;我们定义一个S 和 E作为开始和结束。 示例的唐诗大概有40000多首#xff0c; 首先数据预处理#xff0c;将唐诗加载到内存#xff0c;生成对应的word2idx、idx2word、以及唐诗按顺序的字序列。…主要思路 对于唐诗生成来说我们定义一个S 和 E作为开始和结束。 示例的唐诗大概有40000多首 首先数据预处理将唐诗加载到内存生成对应的word2idx、idx2word、以及唐诗按顺序的字序列。 Dataset_Dataloader.py import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoaderdef deal_tangshi():with open(poems.txt, r, encodingutf-8) as fr:lines fr.read().strip().split(\n)tangshis []for line in lines:splits line.split(:)if len(splits) ! 2:continuetangshis.append(S splits[1] E)word2idx {S: 0, E: 1}word2idx_count 2tangshi_ids []for tangshi in tangshis:for word in tangshi:if word not in word2idx:word2idx[word] word2idx_countword2idx_count 1idx2word {idx: w for w, idx in word2idx.items()}for tangshi in tangshis:tangshi_ids.extend([word2idx[w] for w in tangshi])return word2idx, idx2word, tangshis, word2idx_count, tangshi_idsword2idx, idx2word, tangshis, word2idx_count, tangshi_ids deal_tangshi()class TangShiDataset(Dataset):def __init__(self, tangshi_ids, num_chars):# 语料数据self.tangshi_ids tangshi_ids# 语料长度self.num_chars num_chars# 词的数量self.word_count len(self.tangshi_ids)# 句子数量self.number self.word_count // self.num_charsdef __len__(self):return self.numberdef __getitem__(self, idx):# 修正索引值到: [0, self.word_count - 1]start min(max(idx, 0), self.word_count - self.num_chars - 2)x self.tangshi_ids[start: start self.num_chars]y self.tangshi_ids[start 1: start 1 self.num_chars]return torch.tensor(x), torch.tensor(y)def __test_Dataset():dataset TangShiDataset(tangshi_ids, 8)x, y dataset[0]print(x, y)if __name__ __main__:# deal_tangshi()__test_Dataset()TangShiModel.py唐诗的模型import torch import torch.nn as nn from Dataset_Dataloader import * import torch.nn.functional as Fclass TangShiRNN(nn.Module):def __init__(self, vocab_size):super().__init__()# 初始化词嵌入层self.ebd nn.Embedding(vocab_size, 128)# 循环网络层self.rnn nn.RNN(128, 128, 1)# 输出层self.out nn.Linear(128, vocab_size)def forward(self, inputs, hidden):embed self.ebd(inputs)# 正则化层embed F.dropout(embed, p0.2)output, hidden self.rnn(embed.transpose(0, 1), hidden)# 正则化层embed F.dropout(output, p0.2)output self.out(output.squeeze())return output, hiddendef init_hidden(self):return torch.zeros(1, 64, 128) main.py: import timeimport torchfrom Dataset_Dataloader import * from TangShiModel import * import torch.optim as optim from tqdm import tqdmdevice torch.device(cuda if torch.cuda.is_available() else cpu)def train():dataset TangShiDataset(tangshi_ids, 128)epochs 100model TangShiRNN(word2idx_count).to(device)criterion nn.CrossEntropyLoss()optimizer optim.Adam(model.parameters(), lr1e-3)for idx in range(epochs):dataloader DataLoader(dataset, batch_size64, shuffleTrue, drop_lastTrue)start_time time.time()total_loss 0total_num 0total_correct 0total_correct_num 0hidden model.init_hidden()for x, y in tqdm(dataloader):x x.to(device)y y.to(device)# 隐藏状态hidden model.init_hidden()hidden hidden.to(device)# 模型计算output, hidden model(x, hidden)# print(output.shape)# print(y.shape)# 计算损失loss criterion(output.permute(1, 2, 0), y)# 梯度清零optimizer.zero_grad()# 反向传播loss.backward()# 参数更新optimizer.step()total_loss loss.sum().item()total_num len(y)total_correct_num y.shape[0] * y.shape[1]# print(output.shape)total_correct (torch.argmax(output.permute(1, 0, 2), dim-1) y).sum().item()print(epoch : %d average_loss : %.3f average_correct : %.3f use_time : %ds %(idx 1, total_loss / total_num, total_correct / total_correct_num, time.time() - start_time))torch.save(model.state_dict(), f./modules/tangshi_module_{idx 1}.bin)if __name__ __main__:train()predict.py import torch import torch.nn as nn from Dataset_Dataloader import * from TangShiModel import *device torch.device(cuda if torch.cuda.is_available() else cpu)def predict():model TangShiRNN(word2idx_count)model.load_state_dict(torch.load(./modules/tangshi_module_100.bin, map_locationtorch.device(cpu)))model.eval()hidden torch.zeros(1, 1, 128)start_word input(输入第一个字:)flag Nonetangshi_strs []while True:if not flag:outputs, hidden model(torch.tensor([[word2idx[S]]], dtypetorch.long), hidden)tangshi_strs.append(S)flag Trueelse:tangshi_strs.append(start_word)outputs, hidden model(torch.tensor([[word2idx[start_word]]], dtypetorch.long), hidden)top_i torch.argmax(outputs, dim-1)if top_i.item() word2idx[E]:breakprint(top_i)start_word idx2word[top_i.item()]print(tangshi_strs)if __name__ __main__:predict()完整代码如下 https://github.com/STZZ-1992/tangshi-generator.githttps://github.com/STZZ-1992/tangshi-generator.git
http://www.dnsts.com.cn/news/263657.html

相关文章:

  • 图书购物网站开发总结厦门物流网站建设
  • 北京市城乡建设网站相册网站建设目的
  • 无锡网页建站公司门户网站是什么
  • 淮南房地产网站建设网站西部数码备案域名购买
  • 公司网站域名续费如何做电商直播
  • 网站横幅怎么更换小型广告公司都干什么
  • 如何做原创短视频网站主机做网站服务器怎么设置
  • 网站内外链建设wordpress图文直播
  • 2345官方网站网站名称创意大全
  • 建设购物网站费用专门做海报的网站
  • 网站建设中行为的名词解释旅游网站怎么制作
  • 爱站网ip反查域名网页设计与制作总结报告
  • c语言做项目网站我的世界充值网站怎么做
  • 平面磨床东莞网站建设无锡网站建设wuxi8878
  • 视频网站的嵌入代码是什么临沂手机网站制作
  • 甘肃省建设工程168网站用公司注册公司需要什么资料
  • 排名好的青岛网站建设吉林省建设厅网站杨学武
  • wordpress站点切换为中文坑梓做网站
  • 网站域名所有权证明抚州建设工程网站
  • 北京东城区 网站建设天眼查网站
  • 做外贸在那些网站找业务wordpress网站制作
  • 建设网站网页idc机房建设
  • 网站建设服务费属于什么费用微应用和微网站的区别
  • 网站链接可以自己做吗网站建设分析书引言
  • 阿里云备案网站服务内容怎么填代做效果图的网站好
  • 怎样批量做地级市网站个人网站做淘宝客
  • 加强网站建设管理办法学院实验室建设网站的好处
  • 网站备案查询 优帮云竹子建站官网
  • 网站开发实训报告总结2021阳江保安招聘网
  • 景区微网站 建设方案外卖小程序怎么制作