当前位置: 首页 > news >正文

做网站做哪个全国小微企业名录官网

做网站做哪个,全国小微企业名录官网,网站建设权利义务,网站建设 文章安装之前可以先了解一下论文的主要内容#xff0c;便于之后网络训练与推理#xff0c;调试程序。 论文地址#xff1a;nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation | Nature Methods 也可以从其他博客快速浏览#xff1a…安装之前可以先了解一下论文的主要内容便于之后网络训练与推理调试程序。 论文地址nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation | Nature Methods 也可以从其他博客快速浏览论文解读- nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation附实现教程_nnunet self adaptinng-CSDN博客 如果想跟官网github一样在ubuntu下安装参考nnUNet保姆级使用教程从环境配置到训练与推理新手必看-CSDN博客 1.本博客是在win11安装前期Anaconda的虚拟环境自己配置好然后下载好nnUnet v1的安装包然后解压在该目中运行 pip install -e . 如果需要观察模型的网络结构图可以安装hiddenlayer: nnUNet给出的指令 pip install --upgrade githttps://github.com/FabianIsensee/hiddenlayer.gitmore_plotted_details#egghiddenlayer 上面指令自己运行报错: × git clone --filterblob:none --quiet https://github.com/FabianIsensee/hiddenlayer.git C:\Users\Administrator\AppData\Local\Temp\pip-install-dh84s7ac\hiddenlayer_be2e7545caf44fbeae10f5b0cfd81e30 did not run successfully可能是网络原因。干脆直接从hiddenlayer官网的指令进行安装顺利安装: pip install githttps://github.com/waleedka/hiddenlayer.git 2.开始准备推理的数据注意它的格式要求开始体验一下如何用官网模型进行infer使用 查看nnUNet提供的预训练好的模型 nnUNet_print_available_pretrained_models Task001_BrainTumour Brain Tumor Segmentation. Segmentation targets are edema, enhancing tumor and necrosis, Input modalities are 0: FLAIR, 1: T1, 2: T1 with contrast agent, 3: T2. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task002_Heart Left Atrium Segmentation. Segmentation target is the left atrium, Input modalities are 0: MRI. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task003_Liver Liver and Liver Tumor Segmentation. Segmentation targets are liver and tumors, Input modalities are 0: abdominal CT scan. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task004_Hippocampus Hippocampus Segmentation. Segmentation targets posterior and anterior parts of the hippocampus, Input modalities are 0: MRI. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task005_Prostate Prostate Segmentation. Segmentation targets are peripheral and central zone, Input modalities are 0: T2, 1: ADC. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task006_Lung Lung Nodule Segmentation. Segmentation target are lung nodules, Input modalities are 0: abdominal CT scan. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task007_Pancreas Pancreas Segmentation. Segmentation targets are pancras and pancreas tumor, Input modalities are 0: abdominal CT scan. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task008_HepaticVessel Hepatic Vessel Segmentation. Segmentation targets are hepatic vesels and liver tumors, Input modalities are 0: abdominal CT scan. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task009_Spleen Spleen Segmentation. Segmentation target is the spleen, Input modalities are 0: abdominal CT scan. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task010_Colon Colon Cancer Segmentation. Segmentation target are colon caner primaries, Input modalities are 0: CT scan. Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task017_AbdominalOrganSegmentation Multi-Atlas Labeling Beyond the Cranial Vault - Abdomen. Segmentation targets are thirteen different abdominal organs, Input modalities are 0: abdominal CT scan. Also see https://www.synapse.org/#!Synapse:syn3193805/wiki/217754Task024_Promise Prostate MR Image Segmentation 2012. Segmentation target is the prostate, Input modalities are 0: T2. Also see https://promise12.grand-challenge.org/Task027_ACDC Automatic Cardiac Diagnosis Challenge. Segmentation targets are right ventricle, left ventricular cavity and left myocardium, Input modalities are 0: cine MRI. Also see https://acdc.creatis.insa-lyon.fr/Task029_LiTS Liver and Liver Tumor Segmentation Challenge. Segmentation targets are liver and liver tumors, Input modalities are 0: abdominal CT scan. Also see https://competitions.codalab.org/competitions/17094Task035_ISBILesionSegmentation Longitudinal multiple sclerosis lesion segmentation Challenge. Segmentation target is MS lesions, input modalities are 0: FLAIR, 1: MPRAGE, 2: proton density, 3: T2. Also see https://smart-stats-tools.org/lesion-challengeTask038_CHAOS_Task_3_5_Variant2 CHAOS - Combined (CT-MR) Healthy Abdominal Organ Segmentation Challenge (Task 3 5). Segmentation targets are left and right kidney, liver, spleen, Input modalities are 0: T1 in-phase, T1 out-phase, T2 (can be any of those) Also see https://chaos.grand-challenge.org/Task048_KiTS_clean Kidney and Kidney Tumor Segmentation Challenge. Segmentation targets kidney and kidney tumors, Input modalities are 0: abdominal CT scan. Also see https://kits19.grand-challenge.org/Task055_SegTHOR SegTHOR: Segmentation of THoracic Organs at Risk in CT images. Segmentation targets are aorta, esophagus, heart and trachea, Input modalities are 0: CT scan. Also see https://competitions.codalab.org/competitions/21145Task061_CREMI MICCAI Challenge on Circuit Reconstruction from Electron Microscopy Images (Synaptic Cleft segmentation task). Segmentation target is synaptic clefts, Input modalities are 0: serial section transmission electron microscopy of neural tissue. Also see https://cremi.org/Task075_Fluo_C3DH_A549_ManAndSim Fluo-C3DH-A549-SIM and Fluo-C3DH-A549 datasets of the cell tracking challenge. Segmentation target are C3DH cells in fluorescence microscopy images. Input modalities are 0: fluorescence_microscopy Also see http://celltrackingchallenge.net/Task076_Fluo_N3DH_SIM Fluo-N3DH-SIM dataset of the cell tracking challenge. Segmentation target are N3DH cells and cell borders in fluorescence microscopy images. Input modalities are 0: fluorescence_microscopy Also see http://celltrackingchallenge.net/ Note that the segmentation output of the models are cell center and cell border. These outputs mus tbe converted to an instance segmentation for the challenge. See https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/dataset_conversion/Task076_Fluo_N3DH_SIM.pyTask082_BraTS2020 Brain tumor segmentation challenge 2020 (BraTS) Segmentation targets are 0: background, 1: edema, 2: necrosis, 3: enhancing tumor Input modalities are 0: T1, 1: T1ce, 2: T2, 3: FLAIR (MRI images) Also see https://www.med.upenn.edu/cbica/brats2020/Task089_Fluo-N2DH-SIM_thickborder_time Fluo-N2DH-SIM dataset of the cell tracking challenge. Segmentation target are nuclei of N2DH cells and cell borders in fluorescence microscopy images. Input modalities are 0: t minus 4, 0: t minus 3, 0: t minus 2, 0: t minus 1, 0: frame of interest Note that the input channels are different time steps from a time series acquisition Note that the segmentation output of the models are cell center and cell border. These outputs mus tbe converted to an instance segmentation for the challenge. See https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/dataset_conversion/Task089_Fluo-N2DH-SIM.py Also see http://celltrackingchallenge.net/Task114_heart_MNMs Cardiac MRI short axis images from the MMs challenge 2020. Input modalities are 0: MRI See also https://www.ub.edu/mnms/ Note: Labels of the MMs Challenge are not in the same order as for the ACDC challenge. See https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/dataset_conversion/Task114_heart_mnms.pyTask115_COVIDSegChallenge Covid lesion segmentation in CT images. Data originates from COVID-19-20 challenge. Predicted labels are 0: background, 1: covid lesion Input modalities are 0: CT See also https://covid-segmentation.grand-challenge.org/Task135_KiTS2021 Kidney and kidney tumor segmentation in CT images. Data originates from KiTS2021 challenge. Predicted labels are 0: background, 1: kidney, 2: tumor, 3: cyst Input modalities are 0: CT See also https://kits21.kits-challenge.org/Task169_BrainTumorPET Brain tumor segmentation in FET PET images. Data originates from the Research Center Jülich, Germany. Predicted labels are 0: background, 1: tumor Input modalities are 0: FET PET See also (NOT YET AVAILABLE) 需要类似于ubuntu系统下一样设置环境临时变量 set RESULTS_FOLDER自己的硬盘根目录\nnUNet-nnunetv1\dataset\nnUNet_trained_models set nnUNet_raw_data_base自己的硬盘根目录\nnUNet-nnunetv1\dataset\nnUNet_raw set nnUNet_preprocessed自己的硬盘根目录\nnUNet-nnunetv1\dataset\nnUNet_preprocessed是否设置成功可以通过 echo %RESULTS_FOLDER% echo %nnUNet_raw_data_base% echo %nnUNet_preprocessed% 3. 推理之前需要将数据按照nnUNet要求进行格式转换 由于ubuntu跟win11系统路径格式不一样(不懂可以看下区别)需要提前修改相应的程序 1nnUNet_convert_decathlon_task.py中22行的“folder.split(/)[-1]”改成“folder.split(\\)[-1]”。 2utils.py中40行的input_folder.split(/)[-1]改成input_folder.split(\\)[-1] 3) common_utils.py中26行的filename.split(/)[-1]改成filename.split(\\)[-1] 然后根据数据格式转换说明 nnUNet_convert_decathlon_task -i FOLDER_TO_TASK_AS_DOWNLOADED_FROM_MSD -p NUM_PROCESSES 具体指令 nnUNet_convert_decathlon_task -i 自己存放数据集的路径\Task05_Prostate 运行结果目录如下 以imagesTs为例 按照官网进行数据预处理 nnUNet_plan_and_preprocess -t XXX --verify_dataset_integrity XXX表示任务号 nnUNet_plan_and_preprocess -t 005 --verify_dataset_integrity 4. 运行推理程序 范例 nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t TASK_NAME_OR_ID -m CONFIGURATION --save_npz 这里需要注意一定要修改cropping.py中123行的i.split(/)[-1][:-4]将其修改为i.split(\\)[-1][:-4]。否则会报错误这个错误很隐蔽网上查了很多资料没有解决一句句打断点找到的问题所在debug不易趟掉很多坑 “return _nx.concatenate(arrs, 0, dtypedtype, castingcasting) ValueError: need at least one array to concatenate” 检测一下nnUNet_cropped_data是否生成了预处理的文件*.npz和*.pkl:  nnUNet_predict -i 自己的路径\nnUNet_raw\nnUNet_raw_data\Task005_Prostate\imagesTs -o 自己的路径\nnUNet_raw\nnUNet_raw_data\Task005_Prostate\inferTs -t 5 -m 3d_fullres -f 0 运行结果 推理后得到标注结果 现在已基本掌握了如何利用nnUNet以后模型进行推理先会用再学如何利用自己的数据进行训练之后重点讲如何自定义训练。这篇博客主要是为了解决nnUNet如何在win11环境中解决数据转换和数据预处理以及如何模型推理。目前国内win11环境安装配置为此独一份原创来之不易点赞收藏后期更精彩。
http://www.dnsts.com.cn/news/51254.html

相关文章:

  • 商贸公司寮步网站建设极致发烧wordpress 十个
  • seo做网站花乡做网站公司
  • 网站缩略图存哪里好政务服务中心网站建设总结
  • 家电网站设计济南的网站建设
  • 镜像网站怎么做排名云南seo整站优化报价
  • 新乡网站建设制作app软件免费下载安装最新版
  • 松原市建设局网站二手网站开发
  • 网站制作带优化wordpress 多媒体 权限
  • 网站建设现状调查研究深圳创业贷
  • 怎样制作个人网站摄影网站投稿
  • 工程建设云网站优秀个人网站主页
  • 网站建设公司的方案wordpress如何修改代码
  • 萧山做网站公司wordpress地址改不了
  • 北京中航空港建设工程有限公司网站梅州市工程建设交易中心网站
  • 凡科做网站好吗外贸平台实训总结
  • 企业网站推广计划书网络关键词排名软件
  • 怎么用dw设计网站页面淮南论坛
  • 南昌市做网站wordpress 文章缩放
  • 公司网站开发排名盐城网站建设官网
  • 大丰网站建设找哪家好php手机网站制作
  • 网站设计就业前景wordpress注册邮箱失效
  • 网址大全网站网站描述标签优化
  • 河南郑州网站关键词排名系统东莞抖音推广合作
  • 用服务器建立网站吗医院网站开发方案
  • 深圳网站设计公司招聘汕头模板网建站
  • 织梦cms官方网站网站建设买了域名
  • 网站设计建设代理机构网站营销公司简介
  • 苏州企业如何建站长治seo顾问
  • 怎么给网站加图标网站收录的页面被k出来
  • 免费网站外链推广wordpress三栏怎么实现