当前位置: 首页 > news >正文

网站制作多少钱?中国纪检监察报记者电话

网站制作多少钱?,中国纪检监察报记者电话,代运营一家店铺多少钱,wordpress的title怎么书写清华大学驭风计划 因为篇幅原因实验答案分开上传#xff0c;深度学习专栏持续更新中#xff0c;期待的小伙伴敬请关注 实验答案链接http://t.csdnimg.cn/bA48U 有任何疑问或者问题#xff0c;也欢迎私信博主#xff0c;大家可以相互讨论交流哟~~ 案例 6 #xff1a;图像自… 清华大学驭风计划 因为篇幅原因实验答案分开上传深度学习专栏持续更新中期待的小伙伴敬请关注 实验答案链接http://t.csdnimg.cn/bA48U 有任何疑问或者问题也欢迎私信博主大家可以相互讨论交流哟~~ 案例 6 图像自然语言描述生成让计算机“看图说话” 相关知识点 RNN 、 Attention 机制、图像和文本数据的处理 1 任务和数据简介 本次案例将使用深度学习技术来完成图像自然语言描述生成任务输入一张 图片模型会给出关于图片内容的语言描述。本案例使用 coco2014 数据集 [1] 包 含 82,783 张训练图片 40,504 张验证图片 40,775 张测试图片。案例使用 AndrejKarpathy[2] 提供的数据集划分方式和图片标注信息案例已提供数据处理的脚本 只需下载数据集和划分方式即可。 图像自然语言描述生成任务一般采用 Encoder-Decoder 的网络结构 Encoder 采用 CNN 结构对输入图片进行编码 Decoder 采用 RNN 结构利用 Encoder编码信息逐个单词的解码文字描述输出。模型评估指标采用 BLEU 分数 [3] 用来衡量预测和标签两句话的一致程度具体计算方法可自行学习案例已提供计算代码。 2 方法描述 模型输入 图像统一到 256 × 256 大小并且归一化到 [−1,1] 后还要对图像进行 RGB 三通道均值和标准差的标准化。语言描述标签信息既要作为目标标签也要作为Decoder 的输入以 start 开始 end 结束并且需要拓展到统一长度例如 : ℎ ⋯ 每个 token 按照词汇表转为相应的整数。同时还需要输入描述语言的长度 具体为单词数加 2 (start end) 目的是为了节省在 pad 上的计算时间。 Encoder 案例使用 ResNet101 网络作为编码器去除最后 Pooling 和 Fc 两层并添加 了 AdaptiveAvgPool2d() 层来得到固定大小的编码结果。编码器已在 ImageNet 上预训练好在本案例中可以选择对其进行微调以得到更好的结果。 Decoder Decoder 是本案例中着重要求的内容。案例要求实现两种 Decoder 方式分别对应这两篇文章[4][5] 。在此简要阐述两种 Decoder 方法进一步学习可参考原文章。 第一种 Decoder 是用 RNN 结构来进行解码解码单元可选择 RNN 、 LSTMGRU 中的一种初始的隐藏状态和单元状态可以由编码结果经过一层全连接层并做批归一化 (Batch Normalization) 后作为解码单元输入得到后续的每个解码单元的输入为单词经过 word embedding 后的编码结果、上一层的隐藏状态和单元状态解码输出经过全连接层和 Softmax 后得到一个在所有词汇上的概率分布并由此得到下一个单词。Decoder 解码使用到了 teacher forcing 机制每一时间步解码时的输入单词为标签单词而非上一步解码出来的预测单词。训练时经过与输入相同步长的解码之后计算预测和标签之间的交叉熵损失进行 BP反传更新参数即可。测试时由于不提供标签信息解码单元每一时间步输入单词为上一步解码预测的单词直到解码出end 信息。测试时可以采用 beam search 解码方法来得到更准确的语言描述具体方法可自行学习。 第二种 Decoder 是用 RNN 加上 Attention 机制来进行解码 Attention 机制做的是生成一组权重对需要关注的部分给予较高的权重对不需要关注的部分给予较低的权重。当生成某个特定的单词时Attention 给出的权重较高的部分会在 图像中该单词对应的特定区域即该单词主要是由这片区域对应的特征生成的。Attention 权重的计算方法为 ( (((_) (ℎ)))) 其中 softmax() 表示 Softmax 函数 fc() 表示全连接层 relu() 表示 ReLU 激活函数encoder_output 是编码器的编码结果 h 是上一步的隐藏状态。初始的隐藏状态和单元状态由编码结果分别经过两个全连接层得到。每一时间步解码单元的输入除了上一步的隐藏状态和单元状态外还有一个向量该向量由单词经过word embedding 后的结果和编码器编码结果乘上注意力权重再经过一层全连接层后的结果拼接而成。解码器同样使用 teacher forcing 机制训练和测试时的流程与第一种 Decoder 描述的一致。 样例输出 第一种 Decoder 得到的结果仅包含图像的文字描述如下图 第二种 Decoder 由于有 Attention 机制的存在可以得到每个单词对应的图片区域如下图 3 参考程序及使用说明 本次案例提供了完整、可供运行的参考程序各程序简介如下 create_input_files.py : 下载好数据集和划分方式后需要运行该脚本文件会生成案例需要的 json 和 hdf5 文件注意指定输入和输出数据存放的位置。 datasets.py : 定义符合 pytorch 标准的 Dataset 类供数据按 Batch 读入。 models.py : 定义 Encoder 和 Decoder 网络结构其中 Encoder 已提前定义好无需自己实现。两种 Decoder 方法需要自行实现已提供部分代码只需将 #ToDo 部分补充完全即可。 solver.py : 定义了训练和验证函数供模型训练使用。 train.ipynb : 用于训练的 jupyter 文件其中超参数需要自行调节训练过程中可以看到模型准确率和损失的变化并可以得到每个 epoch 后模型在验证集上的 BLEU 分数保存最优的验证结果对应的模型用于测试。 test.ipynb : 用于测试的 jupyter 文件加载指定的模型解码时不使用 teacher forcing并使用 beam search 的解码方法最终会得到模型在测试集上的 BLEU分数。 caption.ipynb : 加载指定模型对单张输入图片进行语言描述第一种Decoder 方法只能得到用于描述的语句第二种 Decoder 方法同时可以获取每个单词对应的注意力权重最后对结果进行可视化。 utils.py : 定义一些可能需要用到的函数如计算准确率、图像可视化等。 环境要求 python 包 pytorch, torchvision, numpy, nltk, tqdm, h5py, json, PIL, matplotlib, scikit-image, scipy1.1.0 等。 4 要求与建议  完成 models.py 文件中的 #To Do 部分可参考第 2 部分中的介绍或原论文  调节超参数运行 train.ipynb 其中 attention 参数指示使用哪种 Decoder 分别训练使用两种不同 Decoder 的模型可以分两个 jupyter 文件保存最佳参数和训练记录如 train1.ipynb, train2.ipynb  运行 test.ipynb 得到两个模型在测试集上的 BLEU 分数分别保留结果  选择一张图片可以是测试集中的也可以是自行挑选的对图片进行语言描述自动生成分别保留可视化结果  在参考程序的基础上综合使用深度学习各项技术尝试提升该模型在图像自然语言描述生成任务上的效果如使用更好的预训练模型作为 Encoder 或者提出更好的 Decoder 结构如 Adaptive Attention 等  完成一个实验报告内容包括基础两个模型的实现原理说明、两个模型的最佳参数和对应测试集 BLEU 分数、两个模型在单个图片上的表现效果、自己所做的改进、对比分析两个基础模型结果的不同优劣。  禁止任何形式的抄袭借鉴开源程序务必加以说明。 5 参考资料 [1] MS-COCO 数据集 : https://cocodataset.org/ [2] 划分方式与 caption 信息 http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip [3] https://en.wikipedia.org/wiki/BLEU [4] Vinyals O, Toshev A, Bengio S, et al. Show and tell: A neural image caption generator[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3156-3164. [5] Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//International conference on machine learning. 2015: 2048-2057.
http://www.dnsts.com.cn/news/39261.html

相关文章:

  • 在网站上可以做哪些互动活动网络代码
  • 永州网站建设公司推荐兼职做网站的软件
  • 重庆省建设厅网站东莞软件网站推广
  • wordpress建一个网站网站开发与应用案例教程
  • 免费的tickle网站厦门海沧建设局网站
  • 全网营销老婆第一人黑料wordpress mysql优化
  • 西安网站建设xazxcy沈阳大十字街附近做网站公司
  • 太原seo公司网站php进销存管理系统
  • 网站建设哪家go合浦县城乡规划建设局网站
  • 网站设计所遵循的原则网站开发的销售
  • 深圳东道建设集团网站ps做网站72分辨率
  • 江苏中南建设投标网站淄博网站建设设计公司
  • 网站设计价格大概多少卖域名被刑事拘留
  • 有哪些做红色旅游景点的网站织梦转wordpress
  • 建网站免费咨询做图素材网站开哪个vip好
  • 做微信商城设计网站网站开发的论文课题
  • 免费网站管理系统app在线设计
  • 青岛网站排名多少钱最便宜的网站叫什么名字
  • 做海报的网站有哪些百度ai开放平台
  • 网站开发的税率是多少做微商都去哪些网站留言
  • 效果图网站发帖平台网页设计期末作品欣赏
  • 网站建设 提升和扩大程序_做彩票源码网站开发
  • 深圳企业网站制作哪个网站的建立
  • php网站开发实例教程 源代码做内贸只要有什么网络推广网站
  • 网站备案查询工信部手机版可以推广的app有哪些
  • 学生建设网站国家工信部网站备案
  • 上海网站制作网站wordpress 图片论坛
  • 二手车网站开发wordpress首页文章两列
  • 建立网站怎么申请音乐网站建设的目的
  • 网站怎么做反向代理做推广便宜的网站