做视频有赚钱的网站有哪些,深圳软件开发培训机构,wordpress搜索页面制作,推介网YOLOv4介绍
YOLOv4 是 YOLO 系列的第四个版本#xff0c;继承了 YOLOv3 的高效性#xff0c;并通过大量优化和改进#xff0c;在目标检测任务中实现了更高的精度和速度。相比 YOLOv3#xff0c;YOLOv4 在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检…YOLOv4介绍
YOLOv4 是 YOLO 系列的第四个版本继承了 YOLOv3 的高效性并通过大量优化和改进在目标检测任务中实现了更高的精度和速度。相比 YOLOv3YOLOv4 在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时显著提升了检测性能尤其在复杂场景中的表现尤为出色。
相比 YOLOv3 的改进与优势 改进的 Backbone (CSPDarknet-53) YOLOv4 使用了 CSPDarknet-53 作为其主干网络 (Backbone)。CSPNetCross Stage Partial Network通过部分特征的逐层传递减少了冗余梯度信息提高了推理速度和精度。此外它能够有效降低内存占用使得网络更加轻量化。 PANet (Path Aggregation Network) YOLOv4 引入了 PANet 来替代 YOLOv3 中的 FPN (Feature Pyramid Networks)。PANet 更有效地聚合不同尺度的特征增强了特征表达能力尤其对小目标检测性能提升明显。 Mish 激活函数 YOLOv4 使用 Mish 激活函数代替 YOLOv3 中的 Leaky ReLU。Mish 激活函数可以提供更平滑的梯度传递提升了模型的学习能力和泛化性。 自适应输入分布 (Mosaic Data Augmentation) 在数据增强方面YOLOv4 引入了 Mosaic Data Augmentation这种技术通过将四张不同的图片拼接在一起进行训练使得模型能够更好地适应不同尺寸、位置和背景的物体从而提高泛化能力。 CIoU Loss YOLOv4 使用了 CIoU LossComplete IoU Loss相比 YOLOv3 使用的 IoU LossCIoU 更好地考虑了边界框的重叠度、中心点距离以及长宽比使得目标定位更加精确。 DropBlock Regularization 为了防止过拟合YOLOv4 引入了 DropBlock 正则化方法这是一种空间正则化技术可以在卷积层中随机去除一部分神经元以增强模型的泛化能力。 自适应权重计算 (SAM, Self-Adversarial Training) SAM (Spatial Attention Module) 提升了网络的注意力机制使模型更好地聚焦于重要的特征部分。此外YOLOv4 还引入了 Self-Adversarial Training 作为一种新型的自对抗训练方法增强了模型的鲁棒性。
核心代码展示
以下是 YOLOv4 的核心部分代码包括主干网络 CSPDarknet-53 和 PANet 构建模块。
import torch
import torch.nn as nn# 1. Mish 激活函数
class Mish(nn.Module):def forward(self, x):return x * torch.tanh(nn.functional.softplus(x))# 2. 卷积块包含卷积、BN 和 Mish 激活函数
class ConvBlock(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride, padding):super(ConvBlock, self).__init__()self.conv nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, biasFalse)self.bn nn.BatchNorm2d(out_channels)self.activation Mish()def forward(self, x):return self.activation(self.bn(self.conv(x)))# 3. CSP 模块
class CSPBlock(nn.Module):def __init__(self, in_channels, out_channels, num_blocks):super(CSPBlock, self).__init__()half_channels out_channels // 2self.conv1 ConvBlock(in_channels, half_channels, 1, 1, 0)self.conv2 ConvBlock(in_channels, half_channels, 1, 1, 0)self.res_blocks nn.Sequential(*[ResidualBlock(half_channels) for _ in range(num_blocks)])self.conv3 ConvBlock(half_channels * 2, out_channels, 1, 1, 0)def forward(self, x):x1 self.conv1(x)x2 self.conv2(x)x1 self.res_blocks(x1)return self.conv3(torch.cat([x1, x2], dim1))# 4. PANet 下采样模块
class PANetDownsample(nn.Module):def __init__(self, in_channels, out_channels):super(PANetDownsample, self).__init__()self.conv ConvBlock(in_channels, out_channels, 3, 2, 1) # 步长为 2进行下采样def forward(self, x):return self.conv(x)# 5. YOLOv4 Backbone: CSPDarknet53
class CSPDarknet53(nn.Module):def __init__(self):super(CSPDarknet53, self).__init__()self.conv1 ConvBlock(3, 32, 3, 1, 1)self.conv2 ConvBlock(32, 64, 3, 2, 1)self.csp_block1 CSPBlock(64, 128, 2)self.csp_block2 CSPBlock(128, 256, 8)self.csp_block3 CSPBlock(256, 512, 8)self.csp_block4 CSPBlock(512, 1024, 4)def forward(self, x):x self.conv1(x)x self.conv2(x)x self.csp_block1(x)x_52x52 self.csp_block2(x)x_26x26 self.csp_block3(x_52x52)x_13x13 self.csp_block4(x_26x26)return x_52x52, x_26x26, x_13x13# 6. YOLOv4 Head: PANet
class PANet(nn.Module):def __init__(self, num_classes):super(PANet, self).__init__()self.num_classes num_classes# 下采样和卷积操作self.downsample_52x52 PANetDownsample(256, 512)self.downsample_26x26 PANetDownsample(512, 1024)# 最终输出预测层 (每个尺度的 YOLO head)self.yolo_head_52x52 YOLOHead(256, num_classes)self.yolo_head_26x26 YOLOHead(512, num_classes)self.yolo_head_13x13 YOLOHead(1024, num_classes)def forward(self, x_52x52, x_26x26, x_13x13):x_26x26 self.downsample_52x52(x_52x52) x_26x26x_13x13 self.downsample_26x26(x_26x26) x_13x13yolo_output_52x52 self.yolo_head_52x52(x_52x52)yolo_output_26x26 self.yolo_head_26x26(x_26x26)yolo_output_13x13 self.yolo_head_13x13(x_13x13)return [yolo_output_52x52, yolo_output_26x26, yolo_output_13x13]# 7. YOLOv4 完整模型
class YOLOv4(nn.Module):def __init__(self, num_classes):super(YOLOv4, self).__init__()self.backbone CSPDarknet53()self.panet PANet(num_classes)def forward(self, x):x_52x52, x_26x26, x_13x13 self.backbone(x)return self.panet(x_52x52, x_26x26, x_13x13)# YOLO Head 定义
class YOLOHead(nn.Module):def __init__(self, in_channels, num_classes):super(YOLOHead, self).__init__()self.conv ConvBlock(in_channels, in_channels * 2, 3, 1, 1)self.pred nn.Conv2d(in_channels * 2, 3 * (num_classes 5), 1, 1, 0)def forward(self, x):x self.conv(x)return self.pred(x)
代码解释 Mish 激活函数 Mish 激活函数取代了 YOLOv3 中的 Leaky ReLU它的平滑梯度使得模型训练更加稳定。 CSPDarknet-53 YOLOv4 使用 CSPDarknet-53 作为主干网络它引入
了 CSPNet 架构在每个残差块中进行特征分割和融合降低了内存消耗并提升了特征提取的效率。 PANet PANet 的引入通过强化不同尺度的特征聚合提升了小目标的检测效果。它替代了 YOLOv3 中的 FPN。 YOLOHead YOLOv4 中的检测头与 YOLOv3 类似但在每个尺度上进行了更多的特征卷积操作以提高预测的准确度。
结论
YOLOv4 相比 YOLOv3 进行了多个方面的改进包括主干网络的升级、特征聚合模块的优化、激活函数的替换、以及新型的正则化和损失函数的引入。这些改进使得 YOLOv4 在保持实时检测能力的同时提升了检测的精度和鲁棒性。