当前位置: 首页 > news >正文

百度站长平台申请提交链接哈尔滨全国网站建设

百度站长平台申请提交链接,哈尔滨全国网站建设,百度指数购买,娱乐网站开发spspwk目录 1.开窗函数的定义 2.数据准备 3.开窗函数之排序 需求:用三种排序方法查询学生的语文成绩排名,并降序显示 4.开窗函数分组 需求:按照科目来分类,使用三种排序方式来排序学生的成绩 5.聚合函数与分组配合使用 6.聚合函数同时和分组以及排序关键字配合使用 --需求1…目录 1.开窗函数的定义 2.数据准备 3.开窗函数之排序 需求:用三种排序方法查询学生的语文成绩排名,并降序显示 4.开窗函数分组 需求:按照科目来分类,使用三种排序方式来排序学生的成绩 5.聚合函数与分组配合使用 6.聚合函数同时和分组以及排序关键字配合使用 --需求1求出每个用户的总pv数,展示所有信息  默认第一行到最后一行 --需求2求出每个用户截止到当天累积的总pv数  默认第一行到当前行 做题思路,开窗函数核心:保证输出结果的记录数和输入的数据记录数一致  7.窗口范围控制 1.默认第一行到当前行 2.第一行到当前行,等效于rows between ..不写,默认就是第一行到当前行 3.向前3行到当前行 4.向前3行 向后1行 5.当前行到最后一行,第一行到最后一行 8.其他函数 1.ntile平分: 注意ntile规则:尽量平均分配 优先满足最小(编号1)的桶彼此最多不相差1个。 --需求统计每个用户pv数最多的前3分之1天。--理解将数据根据cookieid分 根据pv倒序排序 排序之后分为3个部分 取第一部分 1.开窗函数的定义 - 窗口可以理解为操作数据的范围窗口有大有小本窗口中操作的数据有多有少。 - 可以简单地解释为类似于聚合函数的计算函数但是通过GROUP BY子句组合的常规聚合会隐藏正在聚合的各个行最终输出一行 -而窗口函数聚合后还可以访问当中的各个行并且可以将这些行中的某些属性添加到结果集中。 开窗函数格式:  select ... 开窗函数 over(partition by 分组字段名 order by 排序字段名 asc|desc) ... from 表名;  -- 如果有分组操作,select后的字段要么在聚合函数内,要么在group by 后出现 -- 开窗函数: hive和mysql8都能使用 -- 开窗函数本质在表后新增了一列 -- 聚合开窗函数: max min sum avg count 2.数据准备 数据文件score.txt --数据准备 create table students(s_id int,s_name string,subject string,score double,class string )row format delimited fields terminated by \t;--加载数据 load data inpath /input/score.txt into table students;--验证数据 select * from students; 3.开窗函数之排序 --查询最高分的学生 select max(score) from students; -- 99 -- 聚合函数配合over()使用,也可以叫开窗函数--查询最高分的学生,并附上他的名字 select s_name,max(score) over() --每一个学生都会匹配一个最高分,数据不正确 from students;-- 排序开窗函数: row_number  rank  dense_rank -- 排序函数必须配合over(order by 排序字段 asc|desc) row_number: 巧记: 1234   特点: 唯一且连续 dense_rank: 巧记: 1223   特点: 并列且连续 rank   : 巧记: 1224   特点: 并列不连续 需求:用三种排序方法查询学生的语文成绩排名,并降序显示 select s_name,subject,score,row_number() over (order by score desc ) ,--唯一且连续dense_rank() over (order by score desc ) ,--并列且连续rank() over (order by score desc ) --并列不连续 from students where subject 语文; 4.开窗函数分组 -- 开窗函数分组 -- 注意不能用group by ,需要使用partition by,可以理解成partition by是group by的子句 -- 演示排序函数和分组配合使用: 先分组再组内排序 需求:按照科目来分类,使用三种排序方式来排序学生的成绩 select *,row_number() over (partition by subject order by score desc ),dense_rank() over (partition by subject order by score desc ),rank() over (partition by subject order by score desc ) from students;5.聚合函数与分组配合使用 -- 演示聚合函数和分组配合使用 -- 普通分组 select s_name,max(score) from students group by s_name; 查询每个学生的信息,按照文理科分类,以及平均分 -- 开窗分组 select *,avg(score) over(partition by class) from students; 6.聚合函数同时和分组以及排序关键字配合使用 -- 演示聚合函数同时和分组以及排序关键字配合使用 -- 数据准备 ---建表并且加载数据 create table website_pv_info(cookieid string,createtime string, --daypv int ) row format delimited fields terminated by ,;-- 建表 create table website_url_info (cookieid string,createtime string, --访问时间url string --访问页面 ) row format delimited fields terminated by ,;-- 加载数据 load data inpath /input/website_pv_info.txt into table website_pv_info; load data inpath /input/website_url_info.txt into table website_url_info;-- 查询数据 select * from website_pv_info; select * from website_url_info; --需求1求出每个用户的总pv数,展示所有信息  默认第一行到最后一行 cookie是记住用户记录的一个文件,代表一个用户 select *,sum(pv) over (partition by cookieid) from website_pv_info; --需求2求出每个用户截止到当天累积的总pv数  默认第一行到当前行 --sum(...) over( partition by... order by ... )在每个分组内连续累积求和 select *,sum(pv) over (partition by cookieid order by createtime) from website_pv_info; 做题思路,开窗函数核心:保证输出结果的记录数和输入的数据记录数一致  7.窗口范围控制 rows between    - preceding往前    - following往后    - current row当前行    - unbounded起点    - unbounded preceding 表示从前面的起点  第一行    - unbounded following表示到后面的终点  最后一行 1.默认第一行到当前行 select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtime) as pv1 from website_pv_info;2.第一行到当前行,等效于rows between ..不写,默认就是第一行到当前行 select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtimerows between unbounded preceding and current row) as pv2 from website_pv_info; 3.向前3行到当前行 --向前3行至当前行 select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtimerows between 3 preceding and current row) as pv4 from website_pv_info; 15713   ,    157316   ,  573217  ,   732416     ,   324413 相当于查询今天以及前三天的总浏览量,在现实中常称为网站的最近3天访问量. 4.向前3行 向后1行 select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtimerows between 3 preceding and 1 following) as pv5 from website_pv_info;1573218  ,   5732421 5.当前行到最后一行,第一行到最后一行 --当前行至最后一行 select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtime rows between current row and unbounded following) as pv6 from website_pv_info;--第一行到最后一行 也就是分组内的所有行 select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtime rows between unbounded preceding and unbounded following) as pv6 from website_pv_info; 8.其他函数 1.ntile平分: 注意ntile规则:尽量平均分配 优先满足最小(编号1)的桶彼此最多不相差1个。 其他开窗函数: ntile   lag和lead   first_value和last_value ntile(x)功能: 将分组排序之后的数据分成指定的x个部分x个桶            注意ntile规则:尽量平均分配 优先满足最小(编号1)的桶彼此最多不相差1个。 lag: 用于统计窗口内往上第n行值 lead:用于统计窗口内往下第n行值 first_value: 取分组内排序后截止到当前行第一个值 last_value : 取分组内排序后截止到当前行最后一个值 注意: 窗口函数结果都是单独生成一列存储对应数据 -- 演示ntile --把每个分组内的数据均匀分为3桶 SELECTcookieid,createtime,pv,ntile(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2 FROM website_pv_info ORDER BY cookieid,createtime; --需求统计每个用户pv数最多的前3分之1天。 --理解将数据根据cookieid分 根据pv倒序排序 排序之后分为3个部分 取第一部分 with tmp as (SELECTcookieid,createtime,pv,NTILE(3) OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rnFROM website_pv_info) SELECT * from tmp where rn 1; --lag 用于统计窗口内往上第n行值 select cookieid, createtime, url,row_number() over (partition by cookieid order by createtime) rn,lag(createtime, 1) over (partition by cookieid order by createtime) la1,lag(createtime, 2, 2000-01-01 00:00:00) over (partition by cookieid order by createtime) la2 from website_url_info;--lead 用于统计窗口内往下第n行值 select cookieid, createtime, url,row_number() over (partition by cookieid order by createtime) rn,lead(createtime, 1) over (partition by cookieid order by createtime) la1,lead(createtime, 2, 2000-01-01 00:00:00) over (partition by cookieid order by createtime) la2 from website_url_info;--FIRST_VALUE 取分组内排序后截止到当前行第一个值 select cookieid, createtime, url,row_number() over (partition by cookieid order by createtime) rn,first_value(url) over (partition by cookieid order by createtime) fv from website_url_info;--LAST_VALUE 取分组内排序后截止到当前行最后一个值 select cookieid, createtime, url,row_number() over (partition by cookieid order by createtime) rn,last_value(url) over (partition by cookieid order by createtime rows between unbounded preceding and unbounded following) fv from website_url_info;
http://www.dnsts.com.cn/news/76740.html

相关文章:

  • 舒城县重点工程建设局网站建站行业消失了吗
  • 昌吉哪个公司做网站网站开发和商城的科目
  • 郑州网站搭建的公司知名品牌策划设计公司
  • 北京移动端网站价格大型门户网站建设哪便宜
  • 做网站的不给ftp给个人网站做百度百科
  • 网站空间购买价格深圳网站设计兴田德润优惠吗
  • 中堂仿做网站wordpress 分类目录置顶
  • 空白网站怎么建一个空间做2个网站
  • 妇女儿童心理咨询网站建设济南网站设计制作要多久
  • 手机wap网站模板下载wordpress模板脚步代码哪里修改
  • 展示网站模板下载白市驿网站建设
  • 西安做网站多少钱西安免费做网站电话
  • 深圳网站设计公司怎么找黄页网站大全通俗易懂
  • 门户网站建设的成果小破站下载
  • 郑州网站优化工资网站的二级域名
  • 网站标题修改wordpress下安装论坛 伪静态
  • tp5.1做的网站qq网页版网址
  • 开封市建设局网站重庆手机网站推广价格
  • 合肥滨湖建设指挥部网站企业管理软件是什么
  • 怎样更新网站文章俄罗斯乌克兰局势最新消息
  • wordpress做物流网站做网站优化价格
  • 网站域名怎么做浅谈wordpress接入熊掌号
  • 发布网站制作搭建自己的个人网站
  • 邵阳网站建设公司ios开发还有前景吗
  • 空间里怎么放多个网站山西孝义网站开发
  • 如何进行网站建设和推广wordpress 的分享插件
  • 上海正规网站建设成立一个公司需要哪些流程
  • 如何建设网站的目录结构层青岛网站设计模板
  • 这里是我做的网站小程序注册步骤
  • 企业品牌建设方案范文教程seo推广排名网站