当前位置: 首页 > news >正文

引导企业做网站建设通查询设通网站

引导企业做网站,建设通查询设通网站,网站建设公司都会有哪些花销,杭州网站建设工作室0 前言 #x1f525; 优质竞赛项目系列#xff0c;今天要分享的是 #x1f6a9; 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖#xff0c;适合作为竞赛课题方向#xff0c;学长非常推荐#xff01; #x1f947;学长这里给一个题目综合评分(每项满分5分) …0 前言 优质竞赛项目系列今天要分享的是 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖适合作为竞赛课题方向学长非常推荐 学长这里给一个题目综合评分(每项满分5分) 难度系数3分工作量3分创新点4分 更多资料, 项目分享 https://gitee.com/dancheng-senior/postgraduate 简介 你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里那是不是很爽事实证明基于深度学习和OpenCV解决这个问题相对容易只需获取停车场的实时视频即可。 该项目可推荐用于竞赛项目 检测效果 废话不多说 先上效果图 注意车辆移动后空车位被标记上 车辆移动到其他车位 实现方式 整体思路 这个流程的第一步就是检测一帧视频中所有可能的停车位。显然在我们能够检测哪个是没有被占用的停车位之前我们需要知道图像中的哪些部分是停车位。 第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。 第三步就是确定哪些车位目前是被占用的哪些没有。这需要结合前两步的结果。 最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。 这里的每一步我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式但不同的方法会有优劣之分。 使用要使用到两个视觉识别技术 识别空车位停车线识别车辆 检测空车位 车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢 我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说有效的停车位就是那些停着不动的车的地方。但是这似乎也不可靠。它可能会导致假阳性和真阴性。 那么当自动化系统看起来不可靠时我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。 在这里我们将从停车位的视频流中截取一帧并标记停车区域。Python库matplotlib 提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。 我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数并将选定多边形区域的坐标保存在pickle文件中作为输出。 ​ import os import numpy as np import cv2 import pickle import argparse import matplotlib.pyplot as plt from matplotlib.patches import Polygon from matplotlib.widgets import PolygonSelector from matplotlib.collections import PatchCollection from shapely.geometry import box from shapely.geometry import Polygon as shapely_polypoints [] prev_points [] patches [] total_points [] breaker Falseclass SelectFromCollection(object):def __init__(self, ax):self.canvas ax.figure.canvasself.poly PolygonSelector(ax, self.onselect)self.ind []def onselect(self, verts):global pointspoints vertsself.canvas.draw_idle()def disconnect(self):self.poly.disconnect_events()self.canvas.draw_idle()def break_loop(event):global breakerglobal globSelectglobal savePathif event.key b:globSelect.disconnect()if os.path.exists(savePath):os.remove(savePath)print(data saved in savePath file) with open(savePath, wb) as f:pickle.dump(total_points, f, protocolpickle.HIGHEST_PROTOCOL)exit()def onkeypress(event):global points, prev_points, total_pointsif event.key n: pts np.array(points, dtypenp.int32) if points ! prev_points and len(set(points)) 4:print(Points : str(pts))patches.append(Polygon(pts))total_points.append(pts)prev_points pointsif __name__ __main__:parser argparse.ArgumentParser()parser.add_argument(video_path, helpPath of video file)parser.add_argument(--out_file, helpName of the output file, defaultregions.p)args parser.parse_args()global globSelectglobal savePathsavePath args.out_file if args.out_file.endswith(.p) else args.out_file.pprint(\n Select a region in the figure by enclosing them within a quadrilateral.)print( Press the f key to go full screen.)print( Press the esc key to discard current quadrilateral.)print( Try holding the shift key to move all of the vertices.)print( Try holding the ctrl key to move a single vertex.)print( After marking a quadrilateral press n to save current quadrilateral and then press q to start marking a new quadrilateral)print( When you are done press b to Exit the program\n)video_capture cv2.VideoCapture(args.video_path)cnt0rgb_image Nonewhile video_capture.isOpened():success, frame video_capture.read()if not success:breakif cnt 5:rgb_image frame[:, :, ::-1]cnt 1video_capture.release()while True:fig, ax plt.subplots()image rgb_imageax.imshow(image)p PatchCollection(patches, alpha0.7)p.set_array(10*np.ones(len(patches)))ax.add_collection(p)globSelect SelectFromCollection(ax)bbox plt.connect(key_press_event, onkeypress)break_event plt.connect(key_press_event, break_loop)plt.show()globSelect.disconnect()(PS: 若代码出现bug可反馈博主 及时修改) 车辆识别 要检测视频中的汽车我使用Mask- RCNN。它是一个卷积神经网络对来自几个数据集包括COCO数据集的数百万个图像和视频进行了训练以检测各种对象及其边界。 Mask- RCNN建立在Faster-RCNN对象检测模型的基础上。 除了每个检测到的对象的类标签和边界框坐标外Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展包括自动驾驶汽车、机器人等都是由实例分割技术推动的。 M-RCNN将用于视频的每一帧它将返回一个字典其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车卡车和公共汽车的边界框。然后我们将在下一步中使用这些框来计算IoU。 由于Mask-RCNN比较复杂这里篇幅有限需要mask-RCNN的同学联系博主获取 下面仅展示效果 最后 更多资料, 项目分享 https://gitee.com/dancheng-senior/postgraduate
http://www.dnsts.com.cn/news/116678.html

相关文章:

  • 建设厅质监总站网站做网站推广一般多少钱
  • 哪里网站书最全如何做正规电影网站
  • 成都网站建设外包页面设计代码怎么写
  • 网站电脑速成培训班中国最好的工业设计公司
  • 厦门网页建站申请费用个人做网站能赚钱吗
  • 广州建设交易中心网站首页网上推广产品哪个网好
  • 棋盘游戏类网站开发北京工商注册代理公司
  • 如何搭建一个购物网站青岛网站设计哪家好
  • 网站建设安全协议有可以做国外支付系统的网站吗
  • 网络购物网站大全网站建设公司哪里好
  • 承接各类网站建设网站seo心态
  • 网站怎么做下拉刷新logoko
  • microsoft免费网站百度推广登录平台网址
  • 森东网站建设全网seo
  • 免费企业网站怎么做ui网页设计实训报告
  • 凡科网 免费网站移动端网站开发项目
  • 上海网站开发与设计网站建设策划结束语
  • 怎么做网站邮箱中国电子商务研究中心官网
  • 爱网站在线观看免费第二季企业网站开发
  • 怎样做网站404石家庄网站建设刘华
  • 网站后台管理系统 源码网站背景图片素材 唯美
  • 防爆玻璃门网站建设开封网站建设流程与步骤
  • 青田网页设计公司英文网站排名优化
  • 公司网站模板 html网站建设包括哪些费用
  • 网站制作公司电话银川做网站多少钱
  • 做网站的公司 杭州wordpress网址跳转
  • 网站建设与管理赚钱吗喀什网站建设公司
  • php网站 源码软件开发合同模板范本
  • 怎么自学做网站自己画户型图的app
  • 自己开发网站需要什么技术网站制作 网站建设 杭州