当前位置: 首页 > news >正文

厦门做网站公司哪家好php网站开发需要学什么软件

厦门做网站公司哪家好,php网站开发需要学什么软件,centos7做网站,网站空间ip地址查询文章目录 算法介绍FP树表示法构建FP树实现代码 建模资料 ## 赛题思路 #xff08;赛题出来以后第一时间在CSDN分享#xff09; https://blog.csdn.net/dc_sinor?typeblog 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法#xff0c;就是频繁模式树算法#xff0c… 文章目录 算法介绍FP树表示法构建FP树实现代码 建模资料 ## 赛题思路 赛题出来以后第一时间在CSDN分享 https://blog.csdn.net/dc_sinor?typeblog 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法就是频繁模式树算法他与Apriori算法一样也是用来挖掘频繁项集的不过不同的是FP-Tree算法是Apriori算法的优化处理他解决了Apriori算法在过程中会产生大量的候选集的问题而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后产生关联规则的步骤还是和Apriori是一样的。 常见的挖掘频繁项集算法有两类一类是Apriori算法另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集需要多次扫描原始数据当原始数据较大时磁盘I/O次数太多效率比较低下。FPGrowth不同于Apriori的“试探”策略算法只需扫描原始数据两遍通过FP-tree数据结构对原始数据进行压缩效率较高。 FP代表频繁模式Frequent Pattern) 算法主要分为两个步骤FP-tree构建、挖掘频繁项集。 FP树表示法 FP树通过逐个读入事务并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项因此它们的路径可能部分重叠。路径相互重叠越多使用FP树结构获得的压缩效果越好如果FP树足够小能够存放在内存中就可以直接从这个内存中的结构提取频繁项集而不必重复地扫描存放在硬盘上的数据。 一颗FP树如下图所示    通常FP树的大小比未压缩的数据小因为数据的事务常常共享一些共同项在最好的情况下所有的事务都具有相同的项集FP树只包含一条节点路径当每个事务都具有唯一项集时导致最坏情况发生由于事务不包含任何共同项FP树的大小实际上与原数据的大小一样。 FP树的根节点用φ表示其余节点包括一个数据项和该数据项在本路径上的支持度每条路径都是一条训练数据中满足最小支持度的数据项集FP树还将所有相同项连接成链表上图中用蓝色连线表示。 为了快速访问树中的相同项还需要维护一个连接具有相同项的节点的指针列表headTable每个列表元素包括数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。    构建FP树 现在有如下数据 FP-growth算法需要对原始训练集扫描两遍以构建FP树。 第一次扫描过滤掉所有不满足最小支持度的项对于满足最小支持度的项按照全局最小支持度排序在此基础上为了处理方便也可以按照项的关键字再次排序。 第二次扫描构造FP树。 参与扫描的是过滤后的数据如果某个数据项是第一次遇到则创建该节点并在headTable中添加一个指向该节点的指针否则按路径找到该项对应的节点修改节点信息。具体过程如下所示 从上面可以看出headTable并不是随着FPTree一起创建而是在第一次扫描时就已经创建完毕在创建FPTree时只需要将指针指向相应节点即可。从事务004开始需要创建节点间的连接使不同路径上的相同项连接成链表。 实现代码 def loadSimpDat():simpDat [[r, z, h, j, p],[z, y, x, w, v, u, t, s],[z],[r, x, n, o, s],[y, r, x, z, q, t, p],[y, z, x, e, q, s, t, m]]return simpDatdef createInitSet(dataSet):retDict {}for trans in dataSet:fset frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name nameValueself.count numOccurself.nodeLink Noneself.parent parentNodeself.children {}def inc(self, numOccur):self.count numOccurdef disp(self, ind1):print( * ind, self.name, , self.count)for child in self.children.values():child.disp(ind 1)def createTree(dataSet, minSup1):headerTable {}#此一次遍历数据集 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] headerTable.get(item, 0) 1#根据最小支持度过滤lessThanMinsup list(filter(lambda k:headerTable[k] minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet set(headerTable.keys())#如果所有数据都不满足最小支持度返回None, Noneif len(freqItemSet) 0:return None, Nonefor k in headerTable:headerTable[k] [headerTable[k], None]retTree treeNode(φ, 1, None)#第二次遍历数据集构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本key:样本中的一个样例value:该样例的的全局支持度localD {}for item in tranSet:if item in freqItemSet:localD[item] headerTable[item][0]if len(localD) 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems [v[0] for v in sorted(localD.items(), keylambda p: (p[1],p[0]), reverseTrue)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children: # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count) # incrament countelse: # add items[0] to inTree.childreninTree.children[items[0]] treeNode(items[0], count, inTree)if headerTable[items[0]][1] None: # update header tableheaderTable[items[0]][1] inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) 1: # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode): # this version does not use recursionwhile (nodeToTest.nodeLink ! None): # Do not use recursion to traverse a linked list!nodeToTest nodeToTest.nodeLinknodeToTest.nodeLink targetNodesimpDat loadSimpDat() dictDat createInitSet(simpDat) myFPTree,myheader createTree(dictDat, 3) myFPTree.disp()上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序而是将排序放在了第二次扫描时这可以简化代码的复杂度。 控制台信息 建模资料 资料分享: 最强建模资料
http://www.dnsts.com.cn/news/104658.html

相关文章:

  • 那些网站企业可以免费展示app软件程序开发
  • 查询网站是否正规网站怎么登陆后台
  • 多层分销网站建设软件平台公司
  • 深圳建网站哪个公司h5制作软件是什么
  • 完整php网站开发网站程序购买
  • 怎么写公司网站的文案赣州市微语网络科技有限公司
  • 泰州网站关键词优化软件咨询网站微信建设方案
  • 汕头网站快速排名提升网络公司排名及利润
  • 广州正规网站建设企业网站域名后缀cc
  • win本地网站建设搜狗推广后台登录
  • 三门峡住房和建设局网站上海建工网站
  • 临淄网站建设公司手机app软件安装下载
  • 中山网页建站模板网站开发语言p
  • 成武菏泽网站建设冠县网站建设
  • 建站公司排名 软通炫酷网站欣赏
  • 顺德网站制作案例咨询如何注册免费网站
  • 做教案找资料有哪些网站汽车配件加工网
  • 网站建设与管理题目常州规划网站
  • 福建省闽侯县建设局网站佛山网站搜索优化
  • 母婴网站开发昆山网站建设书生商友
  • 网站不足之处西安网站seo
  • 学网站建设好么网站建设免费软件有哪些
  • 做有色研究的网站网站建设功能是什么意思
  • wordpress 获取文章分类id北京网站制作网站优化
  • 在百度备案网站郑州妇科医院哪个医院最好
  • 长春 网站建设网络推广网页设计wordpress模板更改
  • 大学学校网站建设方案海门建设厅网站
  • 上传宝贝网站建设属于什么类目网站建设网站排名
  • 建站系统多少钱wordpress 内容模板
  • 广东专业网站开发企业网站排名运营