当前位置: 首页 > news >正文

高端网站设计制作方法微信网站开发登录

高端网站设计制作方法,微信网站开发登录,深圳福田 外贸网站建设,中华室内设计网怎么样文章目录 1 环境2 创建容器2.1 拉取镜像2.2 启动容器 3 进入容器3.1 进入容器3.2 查看系统信息3.3 换源 4 安装依赖4.1 安装基础依赖4.2 安装eigen3、vtk6、pcl1.84.3 安装Pangolin 0.64.3.1 安装依赖4.3.2 下载4.3.3 编译安装4.3.4 测试 4.4 安装opencv 3.4.154.4.1 安装依赖4… 文章目录 1 环境2 创建容器2.1 拉取镜像2.2 启动容器 3 进入容器3.1 进入容器3.2 查看系统信息3.3 换源 4 安装依赖4.1 安装基础依赖4.2 安装eigen3、vtk6、pcl1.84.3 安装Pangolin 0.64.3.1 安装依赖4.3.2 下载4.3.3 编译安装4.3.4 测试 4.4 安装opencv 3.4.154.4.1 安装依赖4.4.2 下载4.4.3 编译安装4.4.4 测试 5 【可选】测试pcl分割超体5.1 下载PCD文件5.1.1 下载5.1.2 测试 5.2 代码5.3 CMakeLists.txt5.4 编译5.5 测试 6 编译安装Darknet6.1 下载编译6.2 测试6.2.1 下载模型6.2.2 测试 7 编译orb-slam2_semantic_with_labelling7.1 下载7.2 单独编译darknet7.2.1 拷贝7.2.2 添加编译yolo_v3.o7.2.3 编译7.2.4 测试7.2.4.1 查看libYOLOv3SE.so7.2.4.2 测试加载7.2.4.3 测试运行 7.2.5 拷贝libYOLOv3SE.so 7.3 修改CMakeLists.txt7.4 编译 8 运行8.1 运行8.2 结果展示 1 环境 WIN11Nvidia GPUDocker DesktopWSL 说明以下操作都是在WSL的ubuntu和Docker容器中操作其中某些操作没有重复写有问题可参考我另一篇博客https://blog.csdn.net/superbadguy/article/details/148025249 2 创建容器 2.1 拉取镜像 docker pull pytorch/pytorch:1.6.0-cuda10.1-cudnn7-devel2.2 启动容器 xhost local:rootdocker run -d \-v /tmp/.X11-unix:/tmp/.X11-unix \-v /mnt/e/docker-ws/shared/:/shared \--gpus all \-e DISPLAY$DISPLAY \-e QT_X11_NO_MITSHM1 \--ipchost \--name ub18-slam2-labelling \pytorch/pytorch:1.6.0-cuda10.1-cudnn7-devel \tail -f /dev/null3 进入容器 3.1 进入容器 docker exec -it ub18-slam2-labelling /bin/bash3.2 查看系统信息 cat /etc/os-releasenvidia-smi -Lnvcc -Vfind / -name libcudnn.so 3.3 换源 # 备份 cp /etc/apt/sources.list /etc/apt/sources.list.bak# 换源 sed -i s|http://.*archive.ubuntu.com|https://mirrors.aliyun.com|g /etc/apt/sources.list sed -i s|http://.*security.ubuntu.com|https://mirrors.aliyun.com|g /etc/apt/sources.list# 更新软件列表 apt update4 安装依赖 4.1 安装基础依赖 apt install -y vim wget git cmake pkg-config build-essential unzip sudo4.2 安装eigen3、vtk6、pcl1.8 apt-get install -y software-properties-commonadd-apt-repository deb http://security.ubuntu.com/ubuntu xenial-security mainapt-get updateapt-get install libvtk6-dev \ libvtk6-qt-dev \ libboost-all-dev \ libeigen3-dev \ libpcl-dev \ pcl-tools \ -y4.3 安装Pangolin 0.6 4.3.1 安装依赖 apt install libxkbcommon-dev -y apt install wayland-protocols -y apt install libglew-dev libgl1-mesa-dev libwayland-dev -y 4.3.2 下载 mkdir /app cd /appgit clone https://github.com/stevenlovegrove/Pangolin.git cd Pangolin/# 切换到v0.6版本 git checkout v0.6 git branch4.3.3 编译安装 mkdir build cd build cmake -DCMAKE_BUILD_TYPERelease .. make -j$(($(nproc) - 2)) sudo make install4.3.4 测试 cd ../examples/HelloPangolin/ mkdir build cd build/ cmake .. make # 运行弹出图形化界面 ./HelloPangolin4.4 安装opencv 3.4.15 4.4.1 安装依赖 # 1. 添加必要的旧版库源用于libjasper add-apt-repository deb http://security.ubuntu.com/ubuntu xenial-security main apt-get update# 2. 安装基础编译工具 apt-get install -y \build-essential \cmake \git \pkg-config# 3. 安装图像I/O依赖库 apt-get install -y \libjpeg-dev \libpng-dev \libtiff-dev \libjasper1 \libjasper-dev# 4. 安装视频I/O和编解码库 apt-get install -y \libavcodec-dev \libavformat-dev \libswscale-dev \libv4l-dev \libx264-dev \libxvidcore-dev# 5. 安装GUI依赖OpenCV 3.x默认使用GTK2 apt-get install -y \libgtk2.0-dev \gtk2-engines-pixbuf# 6. 安装Python3支持 apt-get install -y \python3-dev \python3-numpy# 7. 安装并行计算和优化库 apt-get install -y \libtbb-dev \libeigen3-dev# 8. 安装其他功能模块依赖 apt-get install -y \libdc1394-22-dev \libglew-dev \libopenexr-dev4.4.2 下载 cd /app wget -O opencv-3.4.15.zip https://github.com/opencv/opencv/archive/refs/tags/3.4.15.zip4.4.3 编译安装 unzip opencv-3.4.15.zip cd opencv-3.4.15 mkdir build cd buildcmake -D CMAKE_BUILD_TYPERELEASE ..make -j$(($(nproc) - 2)) # 使用多线程加速 sudo make install sudo ldconfig4.4.4 测试 pkg-config --modversion opencvcd ../samples/cpp/example_cmake cmake . make ./opencv_example5 【可选】测试pcl分割超体 orb-slam2_with_semantic_labelling代码中有用到pcl分割超体但因为系统或安装等原因会导致程序运行过程中卡住然后退出我尝试了好多好多天终于发现是这个原因真是巨坑啊maybe也是我太菜的缘故 5.1 下载PCD文件 5.1.1 下载 mkdir /app/test_supervoxel cd /app/test_supervoxel wget -O office.zip https://sourceforge.net/projects/pointclouds/files/PCD%20datasets /office.zip/download5.1.2 测试 cd /app/test_supervoxel unzip office.zip cd office pcl_viewer office1.pcd5.2 代码 /app/test_supervoxel/test_supervoxel.cpp #include pcl/console/parse.h #include pcl/point_cloud.h #include pcl/point_types.h #include pcl/io/pcd_io.h #include pcl/segmentation/supervoxel_clustering.h #include pcl/visualization/pcl_visualizer.htypedef pcl::PointXYZRGBA PointT;int main(int argc, char** argv) {if (argc 2) {std::cerr Usage: argv[0] input.pcd [--display] std::endl;return 1;}// 加载点云pcl::PointCloudPointT::Ptr cloud(new pcl::PointCloudPointT);if (pcl::io::loadPCDFilePointT(argv[1], *cloud) -1) {std::cerr Failed to load PCD file! std::endl;return 2;}std::cout Loaded cloud-size() points std::endl;// 参数设置const float voxel_resolution 0.015f;const float seed_resolution 0.15f;const float color_importance 0.1f;const float spatial_importance 0.4f;const float normal_importance 1.0f;// 创建分割器pcl::SupervoxelClusteringPointT super(voxel_resolution, seed_resolution);super.setInputCloud(cloud);super.setColorImportance(color_importance);super.setSpatialImportance(spatial_importance);super.setNormalImportance(normal_importance);super.setUseSingleCameraTransform(false);// 执行分割std::mapstd::uint32_t, pcl::SupervoxelPointT::Ptr supervoxel_clusters;std::cout Starting supervoxel extraction... std::endl;super.extract(supervoxel_clusters); // 这里会触发segmentation fault吗std::cout Extracted supervoxel_clusters.size() supervoxels std::endl;// 可视化修正后的代码bool display pcl::console::find_argument(argc, argv, --display) 0;if (display) {pcl::visualization::PCLVisualizer viewer(Supervoxel Viewer);viewer.addPointCloudPointT(cloud, original);// 正确获取质心类型pcl::PointCloudPointT::Ptr voxel_centers(new pcl::PointCloudPointT);for (auto it supervoxel_clusters.begin(); it ! supervoxel_clusters.end(); it) {voxel_centers-push_back(it-second-centroid_);}viewer.addPointCloud(voxel_centers, centroids);viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5.0, centroids);viewer.spin();}return 0; }5.3 CMakeLists.txt /app/test_supervoxel/CMakeLists.txt cmake_minimum_required(VERSION 3.10) project(test_supervoxel)find_package(PCL 1.8 REQUIRED COMPONENTS common io segmentation visualization) find_package(VTK 6 REQUIRED)# 添加C11支持 set(CMAKE_CXX_STANDARD 11)include_directories(${PCL_INCLUDE_DIRS} ${VTK_INCLUDE_DIRS}) link_directories(${PCL_LIBRARY_DIRS} ${VTK_LIBRARY_DIRS})add_executable(test_supervoxel test_supervoxel.cpp) target_link_libraries(test_supervoxel${PCL_LIBRARIES}${VTK_LIBRARIES}pthread )if(CMAKE_BUILD_TYPE STREQUAL Debug)set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -g3 -O0) endif()5.4 编译 cd /app/test_supervoxel mkdir build cd buildcmake .. make 5.5 测试 cd /app/test_supervoxel/build ./test_supervoxel /app/test_supervoxel/office/office1.pcd --displayLoaded 307200 points Starting supervoxel extraction… Extracted 1998 supervoxels 6 编译安装Darknet orb-slam2_with_semantic_labelling中带了darknet但好像是改过的版本跟官网的还有些不一样折腾了好多天改了好些地方才编译成功但运行仍然时有问题遂放弃治疗直接使用官方的darknet替代 6.1 下载编译 cd /app git clone https://github.com/pjreddie/darknet.git cd darknet make加入GPU和OpenCV vim Makefile 重新编译 make clean make 报错 解决 vim src/image_opencv.cpp 61 image mat_to_image(Mat m)62 {63 // IplImage ipl m;64 IplImage ipl cvIplImage(m); // 新增65 image im ipl_to_image(ipl);66 rgbgr_image(im);67 return im;68 }重新编译 6.2 测试 6.2.1 下载模型 wget https://data.pjreddie.com/files/yolov3.weights6.2.2 测试 # cost 0.42 seconds # 第一次运行可能要1分钟再次运行就很快 ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg# cost 11.7 seconds ./darknet -nogpu detect cfg/yolov3.cfg yolov3.weights data/dog.jpgLoading weights from yolov3.weights…Done! data/dog.jpg: Predicted in 7.869886 seconds. dog: 6366% truck: 1626% truck: 227% bicycle: 3938% 7 编译orb-slam2_semantic_with_labelling 7.1 下载 cd /app git clone https://github.com/qixuxiang/orb-slam2_with_semantic_labellingcd orb-slam2_with_semantic_labelling/ cd Vocabulary/# 此命令可能下载不全手动下载后放到Vocabulary文件夹下 wget https://github.com/raulmur/ORB_SLAM2/blob/master/Vocabulary/ORBvoc.txt.tar.gz7.2 单独编译darknet 7.2.1 拷贝 cp /app/orb-slam2_with_semantic_labelling/Thirdparty/darknet/src/yolo_v3.* /app/darknet/src/7.2.2 添加编译yolo_v3.o vim /app/darkent/Makefile 7.2.3 编译 cd /app/darknet make clean make mv libdarknet.so libYOLOv3SE.so cp cfg/yolov3.cfg .7.2.4 测试 7.2.4.1 查看libYOLOv3SE.so nm -D libYOLOv3SE.so | grep Yolo00000000000973b0 T YoloDetect 0000000000097730 T YoloDetectFromFile 00000000000977d0 T YoloDetectFromImage 00000000000976f0 T YoloLoad 7.2.4.2 测试加载 代码 test_loading.c #include stdio.h #include dlfcn.htypedef int*(*YoloLoadType)(char*, char*);int main() {void* handle dlopen(./libYOLOv3SE.so, RTLD_LAZY | RTLD_NOW);if (!handle) {fprintf(stderr, dlopen error: %s\n, dlerror());return 1;}YoloLoadType YoloLoad (YoloLoadType)dlsym(handle, YoloLoad);if (!YoloLoad) {fprintf(stderr, dlsym error: %s\n, dlerror());return 1;}printf(Calling YoloLoad...\n);char* cfg ./yolov3.cfg; // 替换为绝对路径测试 char* weights ./yolov3.weights; printf(Config path: %s\n, cfg); // 打印路径确认int* net YoloLoad(cfg, weights); // 替换为实际路径printf(YoloLoad returned: %p\n, net);dlclose(handle);return 0; }编译 gcc -g test_loading.c -o test_loading -ldl运行 ./test_loadingLoading weights from ./yolov3.weights…Done! YoloLoad returned: 0x559936b85f20 7.2.4.3 测试运行 代码 test_predict.cpp #include iostream #include opencv2/opencv.hpp #include YOLOv3SE.h // 确保路径正确int main() {// 1. 初始化 YOLOv3 模型YOLOv3 detector;// 2. 加载模型文件需替换为你的实际路径std::string weights yolov3.weights;std::string cfg yolov3.cfg;std::string names ./data/coco.names; // 可选类别名称文件detector.Create(weights, cfg, names);// 3. 加载测试图像cv::Mat img cv::imread(./data/dog.jpg);if (img.empty()) {std::cerr Error: Could not load image! std::endl;return -1;}// 4. 执行检测阈值设为 0.5float threshold 0.5;std::vectorBoxSE boxes detector.Detect(img, threshold);// 5. 绘制检测结果for (const BoxSE box : boxes) {cv::rectangle(img, box, cv::Scalar(0, 255, 0), 2);std::string label box.m_class_name ( std::to_string(box.m_score) );cv::putText(img, label, cv::Point(box.x, box.y - 5), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 255, 0), 1);}// 6. 显示结果cv::imshow(YOLOv3 Detection, img);cv::waitKey(0);// 7. 释放资源析构函数会自动调用此处可省略detector.Release();return 0; }修改并拷贝YOLOv3SE.h 修改vim /app/orb-slam2_with_semantic_labelling/include/YOLOv3SE.h116 std::vectorBoxSE Detect(cv::Mat img, float threshold) { 117 // IplImage* iplimg new IplImage(img); 118 IplImage* iplimg new IplImage(cvIplImage(img)); 119 std::vectorBoxSE boxes this-Detect(iplimg, threshold); 120 delete iplimg; 121 return boxes; 122 }拷贝cp /app/orb-slam2_with_semantic_labelling/include/YOLOv3SE.h /app/darknet/编译 g test_predict.cpp \ -o test_predict \ -I./include -I. \ -L. -lYOLOv3SE \ pkg-config --cflags --libs opencv \ -Wl,-rpath$ORIGIN \ -ldl \ -w 运行 ./test_predict7.2.5 拷贝libYOLOv3SE.so mkdir /app/orb-slam2_with_semantic_labelling/Thirdparty/darknet/build cp libYOLOv3SE.so /app/orb-slam2_with_semantic_labelling/Thirdparty/darknet/build/7.3 修改CMakeLists.txt 修改后的完整CMakeLists.txt cmake_minimum_required(VERSION 2.8) add_definitions(-w) # note 去掉警告 project(ORB_SLAM2)SET(CMAKE_EXPORT_COMPILE_COMMANDS ON)IF(NOT CMAKE_BUILD_TYPE)SET(CMAKE_BUILD_TYPE Release) ENDIF()MESSAGE(Build type: ${CMAKE_BUILD_TYPE})set(CMAKE_C_FLAGS ${CMAKE_C_FLAGS} -Wall -O3 ) set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -Wall -O3 ) set(CXX_COMPILER_FLAGS -03 -ffast-math -fomit-frame-pointer -funroll-loops -fopenmplibomp -msse2)# Check C11 or C0x support #include(CheckCXXCompilerFlag) #CHECK_CXX_COMPILER_FLAG(-stdc11 COMPILER_SUPPORTS_CXX11) #CHECK_CXX_COMPILER_FLAG(-stdc0x COMPILER_SUPPORTS_CXX0X) #if(COMPILER_SUPPORTS_CXX11) # set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -stdc11) # add_definitions(-DCOMPILEDWITHC11) # message(STATUS Using flag -stdc11.) #elseif(COMPILER_SUPPORTS_CXX0X) # set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -stdc0x) # add_definitions(-DCOMPILEDWITHC0X) # message(STATUS Using flag -stdc0x.) #else() # message(FATAL_ERROR The compiler ${CMAKE_CXX_COMPILER} has no C11 support. Please use a different C compiler.) #endif()#SET(CMAKE_C_COMPILER /usr/bin/gcc-5) # note 使用gcc-7#SET(CMAKE_CXX_COMPILER /usr/bin/g-5) # note 使用g-7 set(CMAKE_C_STANDARD 11) add_definitions(-stdc11) #list(APPEND CMAKE_C_FLAGS -stdc11 -O3 -ffast-math -Wno-unused-result) include(FindCUDA) LIST(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules) LIST(APPEND CUDA_NVCC_FLAGS --compiler-options -fno-strict-aliasing -lineinfo -use_fast_math -Xptxas -dlcmcg) LIST(APPEND CUDA_NVCC_FLAGS -gencode archcompute_35,codesm_35) #for gtx9XX LIST(APPEND CUDA_NVCC_FLAGS -gencode archcompute_50,codesm_50) #for maxwell LIST(APPEND CUDA_NVCC_FLAGS -gencode archcompute_52,codesm_52) #for maxwell LIST(APPEND CUDA_NVCC_FLAGS -gencode archcompute_60,codesm_60) #for pascal LIST(APPEND CUDA_NVCC_FLAGS -gencode archcompute_61,codesm_61) #for pascal LIST(APPEND CUDA_NVCC_FLAGS -gencode archcompute_62,codesm_62) #for jetson tx2#find_package(OpenCV 3.0 QUIET) #if(NOT OpenCV_FOUND) #find_package(OpenCV 2.4.3 QUIET) # if(NOT OpenCV_FOUND) # message(FATAL_ERROR OpenCV 2.4.3 not found.) # endif() #endif()############################################################ ############################################################ ########### IMPORTANT ###################################### #### openni lib, make sure to set it with your own path##### set(OPENNI_INCLUDE_DIR ${PROJECT_SOURCE_DIR}/Thirdparty/OpenNI-Linux-x64-2.3/Include) set(OPENNI_LIB_DIR ${PROJECT_SOURCE_DIR}/Thirdparty/OpenNI-Linux-x64-2.3/Redist) ############################################################ ############################################################ ############################################################ ############################################################ ############################################################# note 去掉版本 find_package(Eigen3 REQUIRED) find_package(Pangolin REQUIRED) # adding for point cloud viewer and mapper find_package(PCL REQUIRED) find_package(OpenCV REQUIRED) find_package(CUDA REQUIRED) find_package(OpenMP)# note 修改pcl的include # set(PCL_INCLUDE_DIRS /usr/local/include/pcl-1.8) set(PCL_INCLUDE_DIRS /usr/include/pcl-1.8)add_definitions(-DGPU) add_definitions(-DOPENCV) add_definitions(-DCUDNN) add_definitions(-D_TIMESPEC_DEFINED) add_definitions(-D_TIMESPEC_DEFINED) set(DARKNET_PATH ${PROJECT_SOURCE_DIR}/Thirdparty/darknet) add_definitions(-DDARKNET_FILE_PATH${DARKNET_PATH})include_directories( ${PROJECT_SOURCE_DIR} ${PROJECT_SOURCE_DIR}/include ${OpenCV_INCLUDE_DIRS} # openni ${OPENNI_INCLUDE_DIR} ${EIGEN3_INCLUDE_DIR} ${Pangolin_INCLUDE_DIRS} ${PCL_INCLUDE_DIRS} ${CUDA_INCLUDE_DIRS} ${DARKNET_PATH}/src ${CMAKE_CURRENT_SOURCE_DIR}/gco-v3.0 /usr/local/cuda/include )add_definitions(${PCL_DEFINITIONS} )set(CUDA_INCLUDE_DIR /usr/local/cuda/include) # note 修改cudnn lib目录 # set(CUDNN_LIBRARY_DIR /usr/local/cuda-8.0/targets/x86_64-linux/lib) set(CUDNN_LIBRARY_DIR /usr/lib/x86_64-linux-gnu) set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/lib)set(HEADERSinclude/gco-v3.0/graph.hinclude/gco-v3.0/block.hinclude/gco-v3.0/energy.hinclude/gco-v3.0/GCoptimization.hinclude/gco-v3.0/LinkedBlockList.hinclude/config.hinclude/lsa_tr.hinclude/segmentation.hinclude/segmentation_helpers.h)# note 去掉darknet编译add_library(${PROJECT_NAME} SHARED src/System.cc src/Tracking.cc src/LocalMapping.cc src/LoopClosing.cc src/ORBextractor.cc src/ORBmatcher.cc src/FrameDrawer.cc src/Converter.cc src/MapPoint.cc src/KeyFrame.cc src/Map.cc src/MapDrawer.cc src/Optimizer.cc src/PnPsolver.cc src/Frame.cc src/KeyFrameDatabase.cc src/Sim3Solver.cc src/Initializer.cc src/Viewer.cc src/pointcloudmapping.cc src/segmentation.cc gco-v3.0/maxflow.cpp gco-v3.0/maxflow.cpp gco-v3.0/LinkedBlockList.cpp gco-v3.0/GCoptimization.cpp gco-v3.0/graph.cpp ${HEADERS})add_library(cuda INTERFACE) list(REMOVE_ITEM CUDA_CUBLAS_LIBRARIES CUDA_cublas_device_LIBRARY-NOTFOUND) # note 增加 message(STATUS Cleaned CUDA_CUBLAS_LIBRARIES ${CUDA_CUBLAS_LIBRARIES}) # note 增加 set_target_properties(cuda PROPERTIESINTERFACE_INCLUDE_DIRECTORIES ${CUDA_INCLUDE_DIRS}INTERFACE_LINK_LIBRARIES ${CUDA_LIBRARIES};${CUDA_curand_LIBRARY};${CUDA_CUFFT_LIBRARIES};${CUDA_CUBLAS_LIBRARIES})target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${EIGEN3_LIBS} ${Pangolin_LIBRARIES} ${PROJECT_SOURCE_DIR}/Thirdparty/DBoW2/lib/libDBoW2.so ${PROJECT_SOURCE_DIR}/Thirdparty/g2o/lib/libg2o.so ${PROJECT_SOURCE_DIR}/Thirdparty/darknet/build/libYOLOv3SE.so # note 修改libcudnn.so # /usr/local/cuda/lib64/libcudnn.so /usr/lib/x86_64-linux-gnu/libcudnn.so ${PCL_LIBRARIES} m dl pthread stdc cuda )#CONFIGURE_FILE(./src/segmentation.pc.in segmentation.pc ONLY) # Build examplesset(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin) #add_executable(rgbd_astra #Examples/RGB-D/rgbd_astra.cpp) #target_link_libraries(rgbd_astra ${PROJECT_NAME})#add_executable(rgbd_xtion_cc #Examples/RGB-D/rgbd_xtion_cc.cpp) #target_link_libraries(rgbd_xtion_cc ${PROJECT_NAME})add_executable(rgbd_tumExamples/RGB-D/rgbd_tum.cc) target_link_libraries(rgbd_tum ${PROJECT_NAME} )#add_executable(rgbd_my # Examples/RGB-D/rgbd_my.cc) #target_link_libraries(rgbd_my ${PROJECT_NAME})#add_executable(stereo_kitti #Examples/Stereo/stereo_kitti.cc) #target_link_libraries(stereo_kitti ${PROJECT_NAME})#add_executable(stereo_euroc #Examples/Stereo/stereo_euroc.cc) #target_link_libraries(stereo_euroc ${PROJECT_NAME})#add_executable(mono_tum #Examples/Monocular/mono_tum.cc) #target_link_libraries(mono_tum ${PROJECT_NAME})#add_executable(mono_kitti #Examples/Monocular/mono_kitti.cc) #target_link_libraries(mono_kitti ${PROJECT_NAME})#add_executable(mono_euroc #Examples/Monocular/mono_euroc.cc) #target_link_libraries(mono_euroc ${PROJECT_NAME})# Build tools set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/tools) add_executable(bin_vocabulary tools/bin_vocabulary.cc) target_link_libraries(bin_vocabulary ${PROJECT_NAME})7.4 编译 修改build.sh去掉darknet编译 编译 bash build.sh8 运行 8.1 运行 cd /app wget https://cvg.cit.tum.de/rgbd/dataset/freiburg1/rgbd_dataset_freiburg1_desk.tgztar -zxvf rgbd_dataset_freiburg1_desk.tgzcd /app/orb-slam2_with_semantic_labelling/bin/ mkdir img cp /app/darknet/yolov3.weights . cp /app/darknet/yolov3.cfg ../rgbd_tum \../Vocabulary/ORBvoc.txt \../Examples/RGB-D/TUM1.yaml \/app/rgbd_dataset_freiburg1_desk \../Examples/RGB-D/associations/fr1_desk.txt8.2 结果展示 经过很多天很多夜终于可以成功的跑出来global_color.pcd和segmentation.pcd但global_color.pcd的效果也差强人意segmentation.pcd更是糊了不知道作者是如何跑出那么完美的效果的深深深深深的疑惑maybe还是我太菜了…
http://www.dnsts.com.cn/news/242377.html

相关文章:

  • 上海品质网站建设运营托管公司
  • 龙岩网站建设画册设计说明
  • 小红书广告投放平台做网站推广用优化还是竞价
  • 制作一个专门浏览图片的网站cdn网站
  • 毕业答辩为什么做网站智慧团建系统官方网站登录
  • 网站后台管理系统使用佛山禅城
  • 小企业网站建设哪找做网站卖机器
  • 章丘网站开发培训郑州做网站设计
  • 电子商务创建网站创建wordpress主题
  • 怎样建设百度网站四川建设网网
  • 兼职做任务的网站wordpress图片轮播
  • 网站切图是指什么网站开发重庆
  • c 网站开发如何每天10点执行任务上传图片到 wordpress评论
  • 酒店网站建设方案书网站建设插件代码大全
  • 企业网站系统cms四川红叶建设有限公司网站
  • 太原网站建设报价电商网站 技术
  • 网站设计概述电子商务网站建设策划书范文
  • 商城网站开发价格如何在网站上推广自己的链接
  • 深圳网站制作 公司深圳网络营销推广专员
  • seo快速整站上排名教程制作商城版网站开发
  • 做支付行业招代理一般上什么网站网站做直链下载存储解决方案
  • 商城网站需要注意事项沙坪坝网站建设哪家好
  • 郑州校园兼职网站建设wordpress google联盟
  • 湖北省建设安全管理站网站有人有免费的片资源吗
  • 做网站到底要不要营业执照网站设计课程总结
  • 职业学院网站建设东南网架公司
  • 织梦手机电影网站模板如何检查网站是否被挂木马
  • 盐城专业做网站永久域名查询
  • 网站透明背景wordpress 静态首页
  • 畔游网站建设律师事务所网站设计方案