当前位置: 首页 > news >正文

北京网站备案拍照地点有没有学校需要建设网站

北京网站备案拍照地点,有没有学校需要建设网站,宜兴建设局的网站,推广包括哪些内容Spatial Data Analysis#xff08;六#xff09;#xff1a;空间优化问题 使用pulp库解决空间优化问题#xff1a; pulp是一个用于优化问题的Python库。它包含了多种优化算法和工具#xff0c;可以用于线性规划、混合整数线性规划、非线性规划等问题。Pulp提供了一个简单…Spatial Data Analysis六空间优化问题 使用pulp库解决空间优化问题 pulp是一个用于优化问题的Python库。它包含了多种优化算法和工具可以用于线性规划、混合整数线性规划、非线性规划等问题。Pulp提供了一个简单的方式来定义优化问题包括变量、约束和目标函数并且可以使用多种求解器进行求解。Pulp也提供了可视化工具来展示优化问题的结果。Pulp是一个开源项目可以在GitHub上获取它的源代码。 空间优化一p-中值问题 这个问题需要p设施的位置同时最小化服务所有需求的总加权距离。 每个节点都有一个关联的权重表示该节点的需求量。 目标函数 最小化所有设施和需求节点的需求加权总和。 决策变量 将设施放置在何处以及哪个设施位置为哪些需求节点提供服务 限制 每个节点由 1 个设施提供服务仅当某个位置存在设施时节点才可以由该设施提供服务。我们必须放置p设施每个节点要么是一个设施要么不是。 pip install -q pulpfrom pulp import * import numpy as np import geopandas as gp from scipy.spatial.distance import cdist import matplotlib.pyplot as plt#read a sample shapefile georgia_shp gp.read_file(https://raw.githubusercontent.com/Ziqi-Li/GEO4162C/main/data/georgia/G_utm.shp)georgia_shp.shape(172, 18)创建一个需求和一个设施变量表示每个需求和设施的索引。 需求节点所有县 facility设施将建在一些选定的县之上 #create a demand and a facilities variable, indicating the indices of each demand and facility. #demand node: all counties #facility: Facilities will be built on top of some chosen countiesdemand np.arange(0,172,1) facilities np.arange(0,172,1)计算距离矩阵d_ij(n×n) #Calculate a distance matrix d_ij (n by n) coords list(zip(georgia_shp.centroid.x,georgia_shp.centroid.y))d cdist(coords,coords)每个县(hi)的需求是总人口 #the demand for each county (h_i) is the total populatoion h georgia_shp.TotPop90.values声明设施变量生成的变量名称为X_1,X_2,… # declare facilities variables;the resulting variable names are: X_1,X_2,... X LpVariable.dicts(X_%s,(facilities),catBinary)# declare demand-facility pair variables; the resulting variable names are Y_0_1, Y_0_2,... Y LpVariable.dicts(Y_%s_%s, (demand,facilities),catBinary)要放置的设施数量 #Number of facilities to place p 3 #change this and re-run the code.#Create a new problem prob LpProblem(P_Median, LpMinimize)目标函数最小化所有设施和需求节点的加权需求距离总和 (h_i: i 处的需求d_ij: i 和 j 之间的距离) “for”循环用于迭代序列 # Objective function: Minimizing weighted demand-distance summed over all facilities and demand nodes # (h_i: demand at i; d_ij: distance between i and j) # A for loop is used for iterating over a sequenceprob sum(sum(h[i] * d[i][j] * Y[i][j] for j in facilities) for i in demand)这个约束表明我们必须精确放置 p 个设施 # This constraint indicates we must place exactly p facilitiesprob sum([X[j] for j in facilities]) p这一约束意味着需求节点 i 只能由一个设施提供服务 # This constraint implies that a demand node i can only be serviced by one facilityfor i in demand:prob sum(Y[i][j] for j in facilities) 1这个约束意味着需求节点 i 仅当 j 处有设施时才能由 j 处的设施提供服务 它隐式地消除了 X[j] 0 但 Y[i][j] 1 时的情况 节点 i 由 j 提供服务但 j 处没有设施 # This constraint implies that that demand node i # can be serviced by a facility at j only if there is a facility at j # It implicitly removes situation when X[j] 0 but Y[i][j] 1 # (node i is served by j but there is no facility at j)for i in demand:for j in facilities:prob Y[i][j] X[j]%%time# Solve the above problem prob.solve()print(Status:, LpStatus[prob.status])Status: Optimal CPU times: user 1.35 s, sys: 64 ms, total: 1.42 s Wall time: 11.5 s# The minimized total demand-distance. The unit is person * meter (total distance travelled) print(Objective: ,value(prob.objective))Objective: 469538765110.4489# Print the facility node. rslt[] for v in prob.variables():subV v.name.split(_)if subV[0] X and v.varValue 1:rslt.append(int(subV[1]))print(Facility Node: , subV[1])Facility Node: 126 Facility Node: 30 Facility Node: 82# Get the geomerty of the facility nodes. fac_loc georgia_shp.iloc[rslt,:]fac_locAREAPERIMETERG_UTM_G_UTM_IDAREANAMELatitudeLongitudTotPop90PctRuralPctBachPctEldPctFBPctPovPctBlackXYAreaKeygeometry1267.315030e08117190.0130128GA, Crisp County31.92540-83.771592001148.410.012.470.3029.040.66805648.4353710313081POLYGON ((787012.250 3547615.750, 820243.312 3...301.385270e09274218.03231GA, Fulton County33.78940-84.467166489514.231.69.634.1318.449.92733728.4373324813121POLYGON ((752606.688 3785970.500, 752835.062 3...829.179670e08121744.08484GA, Jenkins County32.78866-81.96042824753.87.713.100.2127.841.51970465.7364026313165POLYGON ((989566.750 3653155.750, 981378.062 3... #Plot the faclities (stars) on top of the demand map. fig, ax plt.subplots(figsize(5,5))georgia_shp.centroid.plot(axax,markersizegeorgia_shp.TotPop90/1000)#markersize is proportional to the population fac_loc.centroid.plot(axax,colorred,markersize300,marker*)空间优化二集合覆盖问题 在此模型中设施可以为距设施给定覆盖距离 Dc 内的所有需求节点提供服务。 问题在于放置最少数量的设施以确保所有需求节点都能得到服务。 我们假设设施没有容量限制。 pip install -q pulpfrom pulp import * import numpy as np import geopandas as gp from scipy.spatial.distance import cdistimport matplotlib.pyplot as plt#read a sample shapefile georgia_shp gp.read_file(https://raw.githubusercontent.com/Ziqi-Li/GEO4162C/main/data/georgia/G_utm.shp)georgia_shp.shape(172, 18)创建一个需求和一个设施变量表示每个需求和设施的索引。 需求节点所有县 facility我们可以在一些县建造设施 #create a demand and a facilities variable, indicating the indices of each demand and facility. #demand node: all counties #facility: we could build facilities in some countiesdemand np.arange(0,172,1) facilities np.arange(0,172,1)计算距离矩阵d_ij(n×n) #Calculate a distance matrix d_ij (n by n) coords list(zip(georgia_shp.centroid.x,georgia_shp.centroid.y)) d cdist(coords,coords)阈值覆盖距离 # Threshold coverage distance Dc 100000 #100km coverage, change this and re run the code.创建一个变量指示节点 i 是否可以被设施 j 覆盖。 #Creata a variable (alpha in the lecture slide pg.28), indicating whether a node i can be covered by facility j. a np.zeros(d.shape) a[d Dc] 1 a[d Dc] 0声明设施变量 Xj # declare facilities variables Xj X LpVariable.dicts(X_%s,(facilities),catBinary)创建一个最小化问题 #Create an minimization problem prob LpProblem(Set_Covering, LpMinimize)目标函数我们要最小化放置设施的数量 # Objective function: we want to minimize the number of placed facilities prob sum([X[j] for j in facilities])该约束意味着每个需求节点 i 需要至少由设施服务 # This constraint implies every demand node i needs to be served by at least facility for i in demand:prob sum(a[i][j]*X[j] for j in facilities) 1 %%time # Solve the above problem prob.solve()print(Status:, LpStatus[prob.status])Status: Optimal CPU times: user 22.5 ms, sys: 1.05 ms, total: 23.6 ms Wall time: 66.4 ms# The minimal number of facilities with the defiened coverage. print(Objective: ,value(prob.objective))Objective: 8.0# Print the facility nodes. rslt [] for v in prob.variables():subV v.name.split(_)if subV[0] X and v.varValue 1:rslt.append(int(subV[1]))print(Facility Node: , subV[1])Facility Node: 102 Facility Node: 120 Facility Node: 145 Facility Node: 150 Facility Node: 30 Facility Node: 38 Facility Node: 9 Facility Node: 97# Get the geomerty of the facility nodes. fac_loc georgia_shp.iloc[rslt,:]#Plot the faclities (stars) on top of the demand map. fig, ax plt.subplots(figsize(5,5))georgia_shp.centroid.plot(axax) fac_loc.centroid.plot(axax,colorred,markersize300,marker*)Axes: ​ ​
http://www.dnsts.com.cn/news/102805.html

相关文章:

  • 背景 网站建设建立网站需要多少钱八寇湖南岚鸿团队
  • 河南企业网站优化wordpress sportsline
  • 中文响应式网站为什么石家庄突然封了
  • 网站高端设计设计感超强的公司名字
  • 山西做网站域名检测查询
  • 网站逻辑结构北京网站建设报价明细
  • 赣州销售网站网站要设置哪些栏目
  • 网站制作公司咨询网站制作公司wordpress persona
  • 做网站有什么js特效公司名字大全英文
  • 做外贸登录国外网站建设网站商城后台系统
  • 做网站买岩棉网站建设工作情况
  • 云南网站seo外包织梦网站怎么修改内容
  • 做详情页比较好的网站怎么找wordpress博客
  • 合肥做装修哪个网站好w3school
  • 长沙营销网站设计沈阳seo优化
  • 实验室网站制作软件开发技术培训课程
  • 龙江做网站网站建设 王卫洲
  • 网站项目建设合同龙华城市建设局网站
  • 一台vps主机可以建设多少个网站手机网站制作费用
  • 网站搭建功能需求wordpress密码登录插件
  • 电子元器件网站怎么做电脑系统做的好的网站
  • 做一个网站做少多少钱湖南省建设厅气源适配性目录2022
  • 用来做网站的软件上海网站建设电
  • 网站无障碍建设标准网站推荐货源
  • 微网站怎么注册wordpress插件h5
  • 企业网站建设存在的不足与困难文章wordpress
  • 网站地图如何更新给女朋友做情侣网站的程序员
  • 使用cms快速搭建商业网站注册小公司
  • 可视化建站源码wordpress多个菜单menu
  • 哈尔滨专业网站建设哪个好蓝色系网站首页