网站建设 山东,怎么注册自己的微网站,佛山市城市建设档案馆网站,单页销售网站制作制作目录
1. 数据结构#xff0c;算法的概念
2. 算法的效率
2.1 算法复杂度
3. 时间复杂度
3.1 时间复杂度的概念
3.2 大O的渐进表示法
3.3 小试牛刀 4. 算法的空间复杂度
4.1 小试牛刀 1. 数据结构#xff0c;算法的概念 数据结构(Data Structure)是计算机存储、组织数据…目录
1. 数据结构算法的概念
2. 算法的效率
2.1 算法复杂度
3. 时间复杂度
3.1 时间复杂度的概念
3.2 大O的渐进表示法
3.3 小试牛刀 4. 算法的空间复杂度
4.1 小试牛刀 1. 数据结构算法的概念 数据结构(Data Structure)是计算机存储、组织数据的方式指相互之间存在一种或多种特定关系的数据元素的集合。 算法(Algorithm):就是定义良好的计算过程他取一个或一组的值为输入并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤用来将输入数据转化成输出结果。 2. 算法的效率
如何衡量一个算法的好坏呢
假设对于斐波那契数列的第 n 项的求解有如下代码
long long Fib(int N)
{if(N 3)return 1;return Fib(N-1) Fib(N-2);
} 这样的递归代码看起来十分简洁那么是不是代码越简洁算法的效率越高呢显然这是不正确的。那该怎么衡量一个算法的好坏呢
2.1 算法复杂度 算法在编写成可执行程序后运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏一般是从时间和空间两个维度来衡量的即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢而空间复杂度主要衡量一个算法运行所需要的额外空间。 在计算机发展的早期计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。 3. 时间复杂度
3.1 时间复杂度的概念 时间复杂度的定义在计算机科学中算法的时间复杂度是一个函数它定量描述了该算法的运行时间。一个算法执行所耗费的时间从理论上说是不能算出来的只有你把你的程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗是可以都上机测试但是这很麻烦所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例算法中的基本操作的执行次数为算法的时间复杂度。 即找到某条基本语句与问题规模N之间的数学表达式就是算出了该算法的时间复杂度。 例如对于如下代码请计算Func1 中 count 执行了多少次
// 请计算一下Func1中count语句总共执行了多少次
void Func1(int N)
{int count 0;for (int i 0; i N ; i){for (int j 0; j N ; j){count;}}for (int k 0; k 2 * N ; k){count;}int M 10;while (M--){count;}printf(%d\n, count);
}
通过计算得到结果N× 2× 10。
实际中我们计算时间复杂度时我们其实并不一定要计算精确的执行次数而只需要大概执行次数那么这里我们使用大O的渐进表示法。
3.2 大O的渐进表示法
大O符号Big O notation是用于描述函数渐进行为的数学符号。 推导大O阶方法 1、用常数1取代运行时间中的所有加法常数。 2、在修改后的运行次数函数中只保留最高阶项。 3、如果最高阶项存在且不是1则去除与这个项目相乘的常数。得到的结果就是大O阶。 使用大O的渐进表示法以后Func1的时间复杂度为O(N*N)。
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项简洁明了的表示出了执行次数。 另外有些算法的时间复杂度存在最好、平均和最坏情况 最坏情况任意输入规模的最大运行次数(上界) 平均情况任意输入规模的期望运行次数 最好情况任意输入规模的最小运行次数(下界) 例如在一个长度为N数组中搜索一个数据x 最好情况1次找到 最坏情况N次找到 平均情况N/2次找到 在实际中一般情况关注的是算法的最坏运行情况所以数组中搜索数据时间复杂度为O(N)。
3.3 小试牛刀
1计算二分查找的时间复杂度。
// 计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{assert(a);int begin 0;int end n-1;// [begin, end]begin和end是左闭右闭区间因此有号 while (begin end){int mid begin ((end-begin)1);if (a[mid] x)begin mid1;else if (a[mid] x)end mid-1;elsereturn mid;}return -1;
} 解二分查找每次更新mid的位置都将查找的区间折半因为时间复杂度是计算算法的最坏情况。易得二分查找的最坏情况就是当区间长度为1时查找到目标元素或者压根查找不到该元素。分析最坏情况是将区间的长度由 N 便到1并且每次更新区间都是原区间的一半。可以得出公式 注意只有当底数为 2 时才可以简化为 log(N)。
2计算斐波那契递归Fib的时间复杂度。
long long Fib(size_t N)
{if(N 3)return 1;return Fib(N-1) Fib(N-2);
}这道题算是时间复杂度计算的算法中比较困难的建议画图计算。 4. 算法的空间复杂度 空间复杂度也是一个数学表达式是对一个算法在运行过程中临时占用存储空间大小的量度。 空间复杂度不是程序占用了多少bytes的空间因为这个也没太大意义所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似也使用大O渐进表示法。 注意函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。 4.1 小试牛刀
1计算阶乘递归Fac的空间复杂度。
long long Fac(size_t N)
{if(N 0)return 1;return Fac(N-1)*N;
} 显然每次调用Fac函数只用了常数个空间即空间复杂度为O(1)但是因为递归会消耗栈上的空间且易得该函数调用了 N 1次根据大O的渐进表示法最终该算法的空间复杂度为O(N)。 2计算斐波那契递归Fib的空间复杂度。
long long Fib(size_t N)
{if(N 3)return 1;return Fib(N-1) Fib(N-2);
} 显然Fac()函数的每次调用消耗的额外空间为常数个即每次调用该函数的空间复杂度为O(1)上面我们又求出了该算法的时间复杂度为O(2^N)那么是不是该算法的空间复杂度就是O(2^N)显然不会这么简单 递归算法的空间复杂度取决于每次函数调用的空间复杂度和最大递归深度