当前位置: 首页 > news >正文

广州做网站app网站建设与运营公司主营业务收入与成本

广州做网站app,网站建设与运营公司主营业务收入与成本,四川建设招标网官网,重庆建设厂历史MapReduce是一种用于使用并行分布式算法在集群计算机上处理大型数据集的编程模型及其相关实现。这一概念首先由Google普及#xff0c;并随后作为Apache Hadoop项目的一部分开源发布。 MapReduce的基本工作流程#xff1a; 映射(Mapping)#xff1a;这是第一阶段#xff0c…MapReduce是一种用于使用并行分布式算法在集群计算机上处理大型数据集的编程模型及其相关实现。这一概念首先由Google普及并随后作为Apache Hadoop项目的一部分开源发布。 MapReduce的基本工作流程 映射(Mapping)这是第一阶段在此阶段中输入数据被划分为多个分块并在整个集群的多个节点之间分散。每个节点独立地对其所拥有的数据分块应用“映射(map)”函数。映射函数接受一对键值(key-value)作为输入并产出一组中间键值对。 例如如果你正在分析网站日志映射函数可能将每个日志条目作为输入并输出IP地址访问次数这样的中间键值对。 洗牌与排序(Shuffling and Sorting)映射阶段之后所有中间键值对都会按其键进行排序和分组。这确保了具有相同键的所有值在进入减少(reduce)步骤之前会被集中到同一个节点上。 Reducing在这一最后阶段将对每组中间键值应用“reduce”函数。reduce函数以某种方式组合这些值从而生成最终输出。例如它可以计算每个IP地址的所有访问次数总和。 MapReduce的优势 可扩展性通过在众多机器之间分布数据能够处理非常大的数据集。故障容忍性如果在处理过程中某个节点发生故障系统可以自动将任务重新分配给另一个节点确保计算仍然能够完成。简单性它通过抽象并隐藏并行化、故障容忍以及数据分布的具体细节简化了编写并行算法的过程。 示例应用场景 网络搜索索引构建 在MongoDB中虽然MapReduce可用于构建复杂的聚合逻辑但实际构建搜索引擎索引时MongoDB的mapReduce功能并不常用因为MongoDB从版本3.4开始引入了更强大的聚合框架Aggregation Pipeline并且对于索引的构建MongoDB本身提供了内建的索引机制。 不过为了演示如何在MongoDB中使用MapReduce进行类似于索引构建的处理假设我们有一个包含网页数据的集合web_pages每个文档包含url网页地址和content网页内容等字段我们可以编写一个简单的MapReduce作业来收集每个唯一URL及其出现次数这可以看作是构建索引的一个简单模拟。 // 定义Map函数它会为每个文档发出一个键值对键是URL值是1 var mapFunction function() {emit(this.url, 1); };// 定义Reduce函数它会将所有相同的URL对应的值加起来 var reduceFunction function(key, values) {return Array.sum(values); };// 运行MapReduce作业 db.web_pages.mapReduce(mapFunction,reduceFunction,{ out: url_index, // 输出结果到新的集合finalize: function(key, reducedValue) { // finalize函数可以对reduce的输出进行进一步处理此处不必要仅作示例return reducedValue;}} );// 查询结果集合 db.url_index.find();上述MapReduce作业创建了一个新集合url_index其中记录了每个网址及其在原始集合中出现的次数。然而这并不是传统意义上的搜索引擎索引因为它没有对内容进行解析、提取关键词或建立倒排索引。 实际构建搜索索引通常涉及更复杂的数据预处理和索引结构设计MongoDB的内置索引和全文索引text indexes更适合这类场景。对于大规模的全文搜索需求通常会选择专门的搜索引擎解决方案如Elasticsearch或Solr。 日志文件分析 在MongoDB中尽管MapReduce适用于批处理和聚合大量数据但随着MongoDB Aggregation Framework的发展现在更推荐使用聚合管道来处理日志分析等场景。然而如果您希望了解如何在早期版本或者特定场景下使用MapReduce来分析MongoDB中的日志数据以下是一个简化的日志文件分析的MapReduce示例。假设您有一个名为log_entries的集合其中每个文档代表一条日志记录含有timestamp时间戳和event_type事件类型等字段想要统计每种事件类型的日志数量 // 定义Map函数它会为每条日志发出键值对键是事件类型值是1 var mapFunction function() {emit(this.event_type, 1); };// 定义Reduce函数它会把同一事件类型的所有计数加在一起 var reduceFunction function(eventType, values) {return Array.sum(values); };// 运行MapReduce作业 db.log_entries.mapReduce(mapFunction,reduceFunction,{out: log_stats, // 输出结果到新的集合} );// 查询结果集合 db.log_stats.find().sort({ _id: 1 });这个MapReduce作业会统计log_entries集合中每种event_type的数量并将结果保存到名为log_stats的新集合中。每个文档的_id将是事件类型值是该事件类型的日志条目总数。 请注意实际的日志分析可能会更复杂需要处理更多字段、日期范围和其他条件。在现代MongoDB应用中同样的任务可能更倾向于使用聚合管道Aggregation Pipeline来实现因为它通常更快更易于理解和维护。 数据聚合任务如统计点击次数、浏览量或购买量 假设你有一个MongoDB集合user_activity其中包含了用户活动数据每个文档格式如下 {_id: ObjectId(...),userId: user1,activityType: click,item: product1,timestamp: ISODate(...) }要统计每个用户的点击次数、浏览量或其他购买行为你可以使用MongoDB的MapReduce功能。以下是一个统计每个用户点击产品次数的MapReduce示例 // Map函数 var mapFunction function() {emit(this.userId, { activityType: this.activityType, count: 1 }); };// Reduce函数 var reduceFunction function(userId, activities) {var result { clickCount: 0, viewCount: 0, purchaseCount: 0 };activities.forEach(function(activity) {switch (activity.activityType) {case click:result.clickCount activity.count;break;case view:result.viewCount activity.count;break;case purchase:result.purchaseCount activity.count;break;}});return result; };// 运行MapReduce操作 db.user_activity.mapReduce(mapFunction,reduceFunction,{out: user_activity_summary,verbose: true} );// 查看结果集合 db.user_activity_summary.find();在这个例子中Map函数会根据用户ID和活动类型发出键值对而Reduce函数则负责汇总每个用户的各项活动计数。最终结果将存储在一个名为user_activity_summary的新集合中。 然而请注意在大多数情况下特别是对于这类相对简单的聚合任务MongoDB的Aggregation Pipeline提供了更为便捷和高效的解决方案例如 db.user_activity.aggregate([{ $group: {_id: $userId,clickCount: { $sum: { $cond: [{ $eq: [$activityType, click] }, 1, 0] } },viewCount: { $sum: { $cond: [{ $eq: [$activityType, view] }, 1, 0] } },purchaseCount: { $sum: { $cond: [{ $eq: [$activityType, purchase] }, 1, 0] } }} } ]);以上聚合管道操作同样会统计每个用户的点击、浏览和购买次数并不需要创建额外的集合来存储结果。 大数据集上的机器学习算法 MongoDB MapReduce在处理机器学习任务方面并不是最直接的选择因为它主要用于数据聚合和批处理而不是构建或训练机器学习模型。然而在一些场合MapReduce可以作为一个初步的工具来进行数据预处理或特征工程为后续机器学习任务准备数据。 假设我们想在一个大型MongoDB集合中使用MapReduce做简单的协同过滤算法的第一步即计算物品之间的相似度基于用户对物品的评分记录。这里我们有一个集合ratings其结构如下 {_id: ObjectId(...),userId: user1,itemId: item1,rating: 4.5 }为了计算每对物品间的共同用户数量和平均评分差值Pearson相似度的一种简化形式我们可以编写如下MapReduce脚本 // Map函数 var mapFunction function() {// 对于每一个评分记录发出itemId1, itemId2键和带有共同用户及评分差值信息的对象emit([this.itemId, this.userId], { otherItemId: this.userId, rating: this.rating }); };// Reduce函数 var reduceFunction function(itemIdPair, userRatings) {var totalUsers {};var ratingsSum {};var ratingsCount {};userRatings.forEach(function(ratingInfo) {var userId ratingInfo.otherItemId;var rating ratingInfo.rating;if (!totalUsers[userId]) {totalUsers[userId] true;ratingsSum[userId] rating;ratingsCount[userId] 1;} else {ratingsSum[userId] rating;ratingsCount[userId];}});// 返回共同用户数量和评分之和实际的相似度计算通常会在外部完成return { commonUsers: Object.keys(totalUsers).length, ratingsSum: ratingsSum, ratingsCount: ratingsCount }; };// 运行MapReduce操作 db.ratings.mapReduce(mapFunction,reduceFunction,{out: { reduce: item_similarity },scope: { Math: Math } // 如果需要数学运算可以注入Math对象} );上面的示例仅仅是用MapReduce对物品间的共同用户进行了计数实际的相似度计算需要在此基础上进一步完成通常是在外部处理Reducer的输出结果因为MapReduce本身的限制并不适合复杂的数学运算和迭代过程。 对于大规模机器学习任务更加推荐的方法是将数据导出至更适合进行机器学习处理的环境如Spark、Hadoop或Python的数据科学库中再利用Scikit-Learn、TensorFlow、PyTorch等成熟机器学习库进行建模。 总之MapReduce通过将复杂的计算分解为可在大量普通服务器上并行执行的更简单的任务为处理大数据提供了一种强大且可扩展的工具。
http://www.dnsts.com.cn/news/147466.html

相关文章:

  • 站酷设计网页版家居网站页面设计图片
  • 哪个网站做动图易语言用客户端和服务器做网站
  • 网站编辑兼职郑州php网站开发培训
  • 小公司做网站推广好不好小程序登录功能
  • 小榄做网站企业泰安房产网新楼盘房价
  • 太原建网站携程旅行网站内容的建设
  • 临沂市经济开发区建设局网站外贸网站seo推广
  • 无锡网站制作专业服务公司北京网页设计平台
  • 网站建设综合实训设计报告新浪云搭建wordpress
  • 网页网站开发大概多少钱汝州市文明建设门户网站
  • 网站建设需要提供哪些信息wordpress 无法将上传的文件移动至
  • 网站批量收录三五互联网站
  • 网站后台设计教程视频江苏省建设工程信息一体化平台
  • 菏泽网站建设价格新版wordpress文章编辑界面
  • 免费的推文制作网站海外短视频服务器
  • 网站怎么自己编辑模块wordpress自定义目录
  • 攻击jsp网站依博罗阀门北京有限公司
  • 男女做视频网站网上打广告
  • 炫酷的企业网站模板做搜狗手机网站优化首
  • 哪里有免费的网站自己做酒店软装设计公司官网
  • vue和react可以做pc网站吗外国网站建站
  • 台州专业做网站杭州市优化服务
  • 网站全局参数设置厦门网站设计定制
  • 水资源监控能力建设门户网站石家庄网站建设雨点牛
  • 网站的域名是什么意思比较好的做淘客网站
  • 怎么在ps做网站首页wordpress 视频播放插件
  • 网站服务商查询成都设计公司排行建筑设计公司
  • 哪里有做网站推广的一起做陶瓷的网站
  • 金融投资公司网站建设论文seo怎么发文章 seo发布工具
  • 网站的功能设计广西中小型营销型网站建设公司