当前位置: 首页 > news >正文

怎么查询最新网站网站的制作步骤包括

怎么查询最新网站,网站的制作步骤包括,帝国网站调用图片集,wordpress修改文件PyTorch 的 CUDA GPU 支持 安装五条铁律#xff08;最新版 2025 修订#xff09;#xff08;适用于所有用户#xff09;-CSDN博客 是否需要预先安装 CUDA Toolkit#xff1f;——按使用场景分级推荐及进阶说明-CSDN博客 “100% 成功的 PyTorch CUDA GPU 支持” 安装攻略… PyTorch 的 CUDA GPU 支持 · 安装五条铁律最新版 2025 修订适用于所有用户-CSDN博客 是否需要预先安装 CUDA Toolkit——按使用场景分级推荐及进阶说明-CSDN博客  “100% 成功的 PyTorch CUDA GPU 支持” 安装攻略_torch cuda 安装-CSDN博客  【CUDA GPU 支持安装全攻略】PyTorch 深度学习开发者指南 面向对象初学者、研究人员、生产部署人员 适用平台Windows / Linux / WSL / 容器环境等全平台支持 一、环境准备与平台说明 无论你使用的是 Windows、Linux 还是 WSL使用 PyTorch 支持 GPU 的前提都是 安装并正确配置 NVIDIA 显卡驱动 系统支持 CUDA GPU PyTorch 安装包使用了合适的 CUDA 后端版本 平台GPU 驱动安装方式推荐系统Windows安装 NVIDIA 官方驱动 .exeWindows 10/11 x64Linux使用包管理器如 apt/dnf或 .run 安装包Ubuntu / Fedora / RHELWSL2Windows 端驱动统一控制 GPUWSL 子系统只需更新内核支持Ubuntu on WSL2 我们推荐使用 WSL2 Ubuntu 22.04 的组合在 Windows 上也能获得 Linux 级别的性能和兼容性。 二、NVIDIA 驱动安装与 GPU 验证 驱动是 CUDA 的基础必须先装好 ✅ 驱动安装完毕后请执行 nvidia-smi确认输出类似以下内容 ----------------------------------------------------------------------------------------- | NVIDIA-SMI 576.02 Driver Version: 576.02 CUDA Version: 12.9 | |--------------------------------------------------------------------------------------- | GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | || | 0 NVIDIA GeForce RTX 3090 WDDM | 00000000:01:00.0 Off | N/A | | 0% 46C P8 21W / 350W | 10246MiB / 24576MiB | 0% Default | | | | N/A | ---------------------------------------------------------------------------------------三、CUDA 与 cuDNN 版本对应关系 支持矩阵 — NVIDIA cuDNN 后端 一般情况下无需手动安装 CUDA Toolkit 或 cuDNN除非你要编译源码或开发底层 CUDA 程序。但理解版本兼容很重要。 CUDA 版本支持的 cuDNN 版本PyTorch 支持状态12.1cuDNN 9.x✅ 支持11.8cuDNN 8.6.x✅ 支持11.7cuDNN 8.5.x✅ 支持11.6cuDNN 8.4.x✅ 支持≤11.3已过时❌ 不建议使用 PyTorch 的安装包已经包含了 runtime 所需的 cudart cuDNN 动态库无需重复安装 四、PyTorch 与 CUDA 的兼容性选版本必看 请始终通过 PyTorch 官网获取与当前驱动兼容的 PyTorch CUDA 对组合版本。 举例常用组合参考 PyTorch 版本CUDA 后端pip 安装命令2.2.xcu121pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu1212.1.xcu118--index-url https://download.pytorch.org/whl/cu1181.13.xcu117--index-url https://download.pytorch.org/whl/cu117 如需安装 CPU 版本可直接 pip install torch torchvision torchaudio五、PyTorch 安装方式详解 ✅ 推荐方式一pip 安装适用所有平台 # 安装 CUDA 12.1 后端版本 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121✅ 推荐方式二conda 安装适用 Anaconda 环境 conda install pytorch torchvision torchaudio pytorch-cuda12.1 -c pytorch -c nvidia⚠️ 源码编译进阶用户专用 用于自定义构建 PyTorch 或开发自定义 CUDA 内核的情况需要 CUDA 工具包 12.9 Update 1 下载 |NVIDIA 开发人员  cuDNN 9.10.2 下载 |NVIDIA 开发人员 安装 CUDA Toolkit 与 cuDNN 设置环境变量 CUDA_HOME ( CUDA12.6 之后会自动处理环境变量的设置) 使用 python setup.py install 编译 六、GPU 环境验证步骤安装完成后必须执行 import torch # 导入 PyTorch 库print(PyTorch 版本, torch.__version__) # 打印 PyTorch 的版本号# 检查 CUDA 是否可用并设置设备cuda:0 或 cpu device torch.device(cuda:0 if torch.cuda.is_available() else cpu) print(设备, device) # 打印当前使用的设备 print(CUDA 可用, torch.cuda.is_available()) # 打印 CUDA 是否可用 print(cuDNN 已启用, torch.backends.cudnn.enabled) # 打印 cuDNN 是否已启用# 打印 PyTorch 支持的 CUDA 和 cuDNN 版本 print(支持的 CUDA 版本, torch.version.cuda) print(cuDNN 版本, torch.backends.cudnn.version())# 创建两个随机张量默认在 CPU 上 x torch.rand(5, 3) y torch.rand(5, 3)# 将张量移动到指定设备CPU 或 GPU x x.to(device) y y.to(device)# 对张量进行逐元素相加 z x y# 打印结果 print(张量 z 的值) print(z) # 输出张量 z 的内容 终端验证用于确认驱动状态 nvidia-smi七、多 GPU 或指定 GPU 的使用方式 PyTorch 支持多 GPU只需通过索引编号设置 device torch.device(cuda:0) # 使用第一张 GPU model.to(device)遍历所有 GPU 名称 for i in range(torch.cuda.device_count()):print(fGPU {i}: {torch.cuda.get_device_name(i)})推荐使用 torch.nn.DataParallel 或 torch.distributed 进行多卡训练。 八、性能测试与环境诊断可选 运行以下脚本测试矩阵乘法性能浮点运算 import torch import timex torch.rand(5000, 5000, devicecuda) y torch.rand(5000, 5000, devicecuda)torch.cuda.synchronize() start time.time()for _ in range(10):z x ytorch.cuda.synchronize() print(10 次 matmul 用时, time.time() - start, 秒)✅ 总结回顾 我们建议按以下顺序执行 安装 GPU 驱动确认 nvidia-smi 正常 安装 PyTorch 对应 CUDA 后端版本官网推荐为准 验证 GPU 是否可用torch.cuda.is_available() 如果需要自定义 GPU 编号、管理多 GPU 环境 可选进行性能基准测试或深度模型推理测试
http://www.dnsts.com.cn/news/3422.html

相关文章:

  • 深圳网站建设哪个网站搭建团队
  • 专门做汽车内饰的网站视频优化软件
  • 做网站如何将一张图片直接变体平面设计app软件有哪些
  • 网站制作者模板wordpress git
  • 放网站的服务器吗上海网站建设选缘魁 -企查
  • 阿里云做网站步骤app商城系统定制开发
  • 厦门网站建设模拟平台企业网站建设建设
  • 哈尔滨多语言网站建设wordpress第三方登录插件
  • 邢台网站制作地址手机开发游戏
  • 域名访问网站在哪里找网页链接打不开
  • 地区性门户网站是什么意思龙岩网站设计 贝壳下拉
  • 网站设计尺寸1920wordpress图片描述
  • 建筑类招聘网站有哪些洛阳直播网站建设
  • 昆明网站代理瑶海区网站建设
  • 东营网站搜索引擎优化苏州网络推广企业
  • 有用模板网在线制作官网免费seo顾问合同
  • 新乡网站建设哪家便宜网络推广公司官网
  • 垂直外贸网站成都网络公司优惠政策
  • 精湛的中山网站建设全球著名科技网站
  • 手机静态网站开发制作各大网站注册记录
  • 部门做网站优点陕西做教学成果网站的公司
  • 做网站有弹窗叫什么开源站群cms
  • 投标网站怎么做WaP网站模块
  • windows2008 iis 网站配置外贸网站如何seo
  • 刚注册在域名可以自己做网站吗房地产网络营销论文
  • 做二手车网站需要什么手续费二手优品哪个网站做
  • 做网站服务器e3建一个公司网站多少钱
  • 辽宁鹤城建设集团网站江门seo
  • 耐思尼克的建站宝盒零食网站源码
  • 婚庆摄影企业网站商业网站建设案例