当前位置: 首页 > news >正文

eclipse网站开发例子动漫制作技术和动漫设计

eclipse网站开发例子,动漫制作技术和动漫设计,合肥政务服务网,国际贸易相关网站基于LangChain构建一个RAG对话问答应用 前言构建本地代理服务器构建RAG对话问答应用数据加载和拆分集成ChatOpenAI和ModelScope构建文本生成模型实例Prompting消息链对话问答流 对话演示Github参考内容 前言 在上一篇文章中#xff0c;我们介绍了如何使用OpenAI的ChatOpenAI构… 基于LangChain构建一个RAG对话问答应用 前言构建本地代理服务器构建RAG对话问答应用数据加载和拆分集成ChatOpenAI和ModelScope构建文本生成模型实例Prompting消息链对话问答流 对话演示Github参考内容 前言 在上一篇文章中我们介绍了如何使用OpenAI的ChatOpenAI构建文本生成但由于囊中羞涩没有进一步探索。转而使用Hugging Face中的免费模型构建RAG。在本文中我们采用OpenAI的聊天接口客户端ChatOpenAI但并未直接使用GPT模型。而是通过本地代理的服务器调用ModelScope社区中的模型完成RAG应用构建。 Fig .1 RAG整体框架图 构建本地代理服务器 我们通过下列三句代码构建本地推理服务器。其中第一句表示使用ModelScope作为模型的推理后端同时程序会将模型推理请求路由到 ModelScope 提供的服务。第二句表示在 CPU 上为模型推理分配 8 GB 的 KV 缓存空间用于存储模型的键值对数据 )。第三句表示启动了一个本地的推理服务器通过vLLM框架提供的api_server启动接口并使用指定的模型进行推理。具体参数解释如下。 model ‘Qwen/Qwen3-0.6B’指定使用的模型名称。trust-remote-code允许从远程服务器加载代码并信任该代码需要在安全的环境下使用。dtype float16指定使用 float16 数据类型进行推理以节省内存和计算资源。gpu-memory-utilization 0.6设置 GPU 内存的使用比例为 60%如果 GPU 可用。 export VLLM_USE_MODELSCOPETrue export VLLM_CPU_KVCACHE_SPACE8 python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen3-0.6B --trust-remote-code --dtype float16 --gpu-memory-utilization 0.6构建RAG对话问答应用 数据加载和拆分 在上一篇文章中详细解释了数据加载和拆分的过程并分析了RecursiveCharacterTextSplitter递归分块的源码。因此此处不在赘述。值得注意的是chunk_size默认为4000而chunk_size越小代表切的块越多则构建向量相似度时更能体现词元平均相似度。在综合切割的文本大小和电脑显存可以适当降低chunk_size。 file_path os.path.abspath(../docs/PatchTST.pdf) loader PyPDFLoader(file_pathfile_path, extract_imagesTrue)pages loader.load_and_split() text_splitter RecursiveCharacterTextSplitter(chunk_size50,chunk_overlap10 ) docs text_splitter.split_documents(pages)# English通用文本表示模型英 embedding ModelScopeEmbeddings(model_idiic/nlp_corom_sentence-embedding_english-base) vectorstore Chroma.from_documents(documentsdocs, embeddingembedding, collection_nameModelScope)retriever vectorstore.as_retriever(search_kwargs{k: 3})集成ChatOpenAI和ModelScope构建文本生成模型实例 第一句环境变量声明使用ModelScope作为模型的推理后端。我们采用ChatOpenAI聊天接口客户端但不适用GPT模型。通过将openai_api_key置为EMPTY和将openai_api_base指向本地接口。使得ChatOpenAI在发送请求时并不会发送到 OpenAI 的服务器而是本地代理的服务器。stop表示模型在生成响应时应该停止的标记或条件。 os.environ[VLLM_USE_MODELSCOPE] True chat ChatOpenAI(modelQwen/Qwen3-0.6B,openai_api_keyEMPTY,openai_api_basehttp://localhost:8000/v1,stop[|im_end|] )Prompting SystemMessage、HumanMessage和AIMessage是标准会话类型。用于构建和管理与对话系统相关的消息流程。在现有的LLM模型中消息流通常由这三类类型构成。下列构建一个简单的Prompt模版其中MessagesPlaceholder表示为一个占位符声明为history_messages。而full_prompt代表完整的消息流。首先系统消息然后中间穿插历史聊天信息最后加上你最新提问的消息。 system_prompt SystemMessagePromptTemplate.from_template(You are a helpful assistant!) user_prompt HumanMessagePromptTemplate.from_template(Using the context below, answer the query.context:{context}query:{query}) history_messages MessagesPlaceholder(variable_namehistory_messages) full_prompt ChatPromptTemplate.from_messages(messages[system_prompt, history_messages, user_prompt])消息链 下列字典中的三个key分别对应上述Prompt模版中定义的变量名。而itemgetter 是 Python 标准库 operator 模块中的一个函数主要用于从对象中提取特定的元素。通常用于从字典或对象中获取值或者从一个元组中按索引提取元素。 值得注意的是|被称为管道运算符在langchain中被用作数据流的连接运算符。简而言之将上一个流的输出作为下一个流的输入。 比如 itemgetter(query)从字典中取出query的值然后将此值传入retriever从向量数据库中检测相似度中的top-k个选项作为prompt。当字典中的三个元素全部填充完毕之后将此字典传入full_prompt中得到完整的消息流。此消息流作为上下文传入文本生成模型中可以有效保证答案的上下文。 chat_chain {context: itemgetter(query) | retriever,query: itemgetter(query),history_messages: itemgetter(history_messages), } | full_prompt | chat对话问答流 下列实现了一个多轮对话模型。 首先从键盘输入所需要提出的问题并结合历史消息传入消息链中最后由文本生成模型给出答案。将问题和答案依次添加到历史消息中保证上下文的完整性。只保存最新的10轮对话。因此一次对话由AI和用户构成因此切片最后20条。 history_messages [] while True:query input(query: )response chat_chain.invoke({query: query,history_messages: history_messages,})history_messages.extend([HumanMessage(contentquery), response])print(response.content)# 保存最新的10轮对话history_messages history_messages[-20:]对话演示 下列演示了两轮对话结果 query: What is time series forecasting? /opt/anaconda3/envs/LLM/lib/python3.10/site-packages/transformers/modeling_utils.py:1614: FutureWarning: The device argument is deprecated and will be removed in v5 of Transformers.warnings.warn( think Okay, the user is asking, What is time series forecasting? I need to answer based on the provided context. Let me look through the documents.The context has two documents. The first one has a page_content that starts with for time series forecasting and mentions In this paper, we... and time series forecasting as metrics. The second document also includes for time series forecasting and time series forecasting as metrics. So, both documents mention time series forecasting. The first one talks about it as a method or a topic in the paper. The second one adds that its used as metrics. The user just needs a clear answer. Since the context is about the paper, the answer should be based on that information. I should state that time series forecasting is a method used to analyze data over time, possibly as a metric in the paper. Make sure to mention both the description and the usage in the answer. /thinkTime series forecasting is a method used to analyze and predict future values of a variable based on historical data. In the context provided, it is described as a topic in the paper, with the content mentioning time series forecasting as metrics. This suggests it is used to evaluate or measure time-based patterns in data. query: What are the current challenges in long-term time series forecasting? /opt/anaconda3/envs/LLM/lib/python3.10/site-packages/transformers/modeling_utils.py:1614: FutureWarning: The device argument is deprecated and will be removed in v5 of Transformers.warnings.warn( think Okay, the user is asking about the current challenges in long-term time series forecasting based on the provided context. Let me start by looking at the context given.The context has a few documents. The first one mentions long-term series forecasting and in Proc. 39th as a reference. The second document talks about for long sequence time-series forecasting and in The for that. The third document is about time series forecasting and mentions for time series forecasting.Now, the user is specifically asking about challenges in long-term forecasting. The context doesnt explicitly list challenges. However, I can infer based on common challenges in time series forecasting. Long-term forecasting often involves issues like data scarcity, high variability, and the need for accurate models. Also, there might be challenges in handling large datasets, ensuring model accuracy over time, and dealing with non-stationary data.I should check if theres any mention of specific challenges in the documents. The first document talks about long-term series forecasting and mentions metrics, which could relate to evaluation. The third document mentions time series forecasting but doesnt delve into challenges. The users query is about current challenges, so the answer should focus on those areas.Therefore, the current challenges in long-term time series forecasting, based on the context, are likely data scarcity, high variability, model accuracy, handling large datasets, and ensuring non-stationarity. I need to present these points clearly and concisely. /thinkBased on the context provided, the current challenges in long-term time series forecasting include: 1. **Data Scarcity and Limited Historical Data**: Limited availability of historical data can hinder accurate modeling and forecasting. 2. **High Variability and Non-Stationarity**: Time series data often exhibits non-stationary patterns, making it harder to maintain consistent forecasts. 3. **Model Accuracy and Overfitting**: The need for models to generalize well over time can lead to overfitting, especially with limited data. 4. **Data Integration and Complexity**: Combining diverse datasets or integrating with other data sources can increase complexity and require advanced techniques. 5. **Computational Limitations**: Processing large datasets and complex models may pose computational challenges, particularly with real-time or long-term forecasting needs. These challenges highlight the importance of robust data preprocessing, advanced algorithms, and ongoing research to improve forecasting accuracy. Github 项目代码https://github.com/FranzLiszt-1847/LLM 参考内容 [1] https://www.bilibili.com/video/BV1Cp421R7Y7/?vd_source49cb02510b110bcee6f8ef1d9d534643 [2] https://www.langchain.com/
http://www.dnsts.com.cn/news/86903.html

相关文章:

  • 手机怎么做网站青岛活动策划公司
  • 徐州做汽车销售的公司网站高端网站建站公司
  • 广州网站优化公司咨询我的网站首页打不开
  • 网站要和别人做api 链接wordpress文字颜色
  • 高端网站建设系统用flash做的网站
  • wordpress square主题网站营销优化
  • 自适应型网站建设哪家便宜做国外lead应该做什么网站
  • 快速开发手机网站wordpress venue
  • 贵阳市网站建设网站营销策略怎么写
  • 昆明公司建设网站制作h5网站建设模板
  • 二手车东莞网站建设网站制作推广公司
  • 门户网站有哪些推广分类微信管理平台登录
  • 架构图在什么网站可以做注册网站合集
  • 网站建设与维护服务俄罗斯乌克兰最新局势最新消息
  • 网站管理工作一般包括华升建设集团公司网站
  • 深圳服务好的网站建设网站开发合同印花税
  • 购物网站的做网站建设模板坏处
  • 外贸网站搭建服务商娱乐网站排行榜
  • 南通企业建设网站电话伊春市住房和城乡建设局网站
  • 网站有关于我们的好处企业公司信息网
  • 网站开发需求分析文档网络营销就是网站营销
  • 没有做网站经验可以学seo吗广州建站
  • 怎么做网站推广软件wordpress资源分享网
  • 电商网站开发的引言博客 wordpress主题
  • 工商网站做企业公示教育培训网站制作
  • 网站架构模板网站建设方案有关内容
  • 如何查网站备案信息做网站属于什么备案
  • 营销网站与传统网站的区别做钓鱼网站的公司
  • 韶关微网站建设数字营销沙盘大赛攻略
  • 网站要背代码?wordpress搞笑