当前位置: 首页 > news >正文

swing做网站怎么下载网站的视频

swing做网站,怎么下载网站的视频,河南免费网站建设,wordpress 编辑器字体大小STM32存储左右互搏 模拟U盘桥接SPI总线FATS读写FLASH W25QXX STM32的USB接口可以模拟成为U盘#xff0c;通过FATS文件系统对连接的存储单元进行U盘方式的读写。 这里介绍STM32CUBEIDE开发平台HAL库模拟U盘桥接SPI总线FATS读写W25Q各型号FLASH的例程。 FLASH是常用的一种非易失…STM32存储左右互搏 模拟U盘桥接SPI总线FATS读写FLASH W25QXX STM32的USB接口可以模拟成为U盘通过FATS文件系统对连接的存储单元进行U盘方式的读写。 这里介绍STM32CUBEIDE开发平台HAL库模拟U盘桥接SPI总线FATS读写W25Q各型号FLASH的例程。 FLASH是常用的一种非易失存储单元W25QXX系列Flash有不同容量的型号如W25Q64的容量为64Mbit也就是8MByte。 W25QXX介绍 W25QXX的SOIC封装如下所示在采用SPI而不是QUAL SPI时管脚定义为 即由片选(/CS), 时钟(CLK), 数据输出(DO)和数据输入(DI)的组成4线SPI信号接口。VCC和GND提供电源和接地连接。 例程采用STM32H750VBT6芯片, FLASH可以选择为8/16/32/64/128/256/512/1024 Mbit的W25Q型号。例程实现可以通过U盘形式和串口控制双方式对FLASH内的文件进行操作实现可交换操作的特性。 STM32工程配置 首先建立基本工程并设置时钟 对于STM32H7有专用的内部48MHz时钟用于USB接口, 其它应用采用内部高速时钟接口即可: 设置UART1作为通讯串口 FLASH连接到了SPI2接口对SPI2进行配置 不用中断和DMA模式SPI2的片选才用软件代码控制配置一个GPIO作为片选输出 配置USB接口 将USB接口例化为U盘模式 对FATS文件系统进行配置 STM32H7资源多可以将堆栈开大些 保存并生成初始工程代码 STM32工程代码 UART串口printf打印输出实现参考STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL) 建立W25Q访问的库头文件W25QXX.h: #ifndef INC_W25QXX_H_ #define INC_W25QXX_H_#include main.huint8_t SPI2_ReadWriteByte(uint8_t TxData);//W25QXX serial chip list: #define W25Q80_ID 0XEF13 #define W25Q16_ID 0XEF14 #define W25Q32_ID 0XEF15 #define W25Q64_ID 0XEF16 #define W25Q128_ID 0XEF17 #define W25Q256_ID 0XEF18 #define W25Q512_ID 0XEF19 #define W25Q1024_ID 0XEF20extern uint16_t W25QXX_TYPE; //To indicate W25QXX type used in this procedure//W25QXX chip select control function #define W25QXX_CS(n) ( n ? HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET) : HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_RESET) )//command table for W25QXX access #define W25X_WriteEnable 0x06 #define W25X_WriteDisable 0x04 #define W25X_ReadStatusReg1 0x05 #define W25X_ReadStatusReg2 0x35 #define W25X_ReadStatusReg3 0x15 #define W25X_WriteStatusReg1 0x01 #define W25X_WriteStatusReg2 0x31 #define W25X_WriteStatusReg3 0x11 #define W25X_ReadData 0x03 #define W25X_FastReadData 0x0B #define W25X_FastReadDual 0x3B #define W25X_PageProgram 0x02 #define W25X_BlockErase 0xD8 #define W25X_SectorErase 0x20 #define W25X_ChipErase 0xC7 #define W25X_PowerDown 0xB9 #define W25X_ReleasePowerDown 0xAB #define W25X_DeviceID 0xAB #define W25X_ManufactDeviceID 0x90 #define W25X_JedecDeviceID 0x9F #define W25X_Enable4ByteAddr 0xB7 #define W25X_Exit4ByteAddr 0xE9uint8_t W25QXX_Init(void); uint16_t W25QXX_ReadID(void); //Read W25QXX ID uint8_t W25QXX_ReadSR(uint8_t reg_num); //Read from status register void W25QXX_4ByteAddr_Enable(void); //Enable 4-byte address mode void W25QXX_Write_SR(uint8_t reg_num,uint8_t d); //Write to status register void W25QXX_Write_Enable(void); //Write enable void W25QXX_Write_Disable(void); //Write disable void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation w/o check void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead); //Read operation void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation void W25QXX_Erase_Chip(void); //Erase whole chip void W25QXX_Erase_Sector(uint32_t Sector_Num); //Erase sector in specific sector number void W25QXX_Wait_Busy(void); //Wait idle status before next operation void W25QXX_PowerDown(void); //Enter power-down mode void W25QXX_WAKEUP(void); //Wake-up#endif /* INC_W25QXX_H_ */ 建立W25Q访问的库源文件W25QXX.c: #include W25QXX.hextern SPI_HandleTypeDef hspi2; extern void PY_Delay_us_t(uint32_t Delay); //Write and read one byte in SPI2 uint8_t SPI2_ReadWriteByte(uint8_t TxData) {uint8_t Rxdata;HAL_SPI_TransmitReceive(hspi2,TxData,Rxdata,1, 1000);return Rxdata; }uint16_t W25QXX_TYPEW25Q64_ID;//W25QXX initialization uint8_t W25QXX_Init(void) {uint8_t temp;W25QXX_CS(1);W25QXX_TYPEW25QXX_ReadID();if((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)){tempW25QXX_ReadSR(3); //read status register 3if((temp0X01)0) //judge address mode and configure to 4-byte address mode{W25QXX_CS(0);SPI2_ReadWriteByte(W25X_Enable4ByteAddr);W25QXX_CS(1);}}if((W25QXX_TYPE0x0000)||(W25QXX_TYPE0xFFFF)) return 0;else return 1; }//Read status registers of W25QXX //reg_num: register number from 1 to 3 //return: value of selected register//SR1 (default 0x00) //BIT7 6 5 4 3 2 1 0 //SPR RV TB BP2 BP1 BP0 WEL BUSY //SPR: default 0, status register protection bit used with WP //TB,BP2,BP1,BP0: FLASH region write protection configuration //WEL: write enable lock //BUSY: busy flag (1: busy; 0: idle)//SR2 //BIT7 6 5 4 3 2 1 0 //SUS CMP LB3 LB2 LB1 (R) QE SRP1//SR3 //BIT7 6 5 4 3 2 1 0 //HOLD/RST DRV1 DRV0 (R) (R) WPS ADP ADS uint8_t W25QXX_ReadSR(uint8_t reg_num) {uint8_t byte0,command0;switch(reg_num){case 1:commandW25X_ReadStatusReg1; //To read status register 1break;case 2:commandW25X_ReadStatusReg2; //To read status register 2break;case 3:commandW25X_ReadStatusReg3; //To read status register 3break;default:commandW25X_ReadStatusReg1;break;}W25QXX_CS(0);SPI2_ReadWriteByte(command); //send commandbyteSPI2_ReadWriteByte(0Xff); //read dataW25QXX_CS(1);return byte; }//Write status registers of W25QXX //reg_num: register number from 1 to 3 //d: data for updating status register void W25QXX_Write_SR(uint8_t reg_num,uint8_t d) {uint8_t command0;switch(reg_num){case 1:commandW25X_WriteStatusReg1; //To write status register 1break;case 2:commandW25X_WriteStatusReg2; //To write status register 2break;case 3:commandW25X_WriteStatusReg3; //To write status register 3break;default:commandW25X_WriteStatusReg1;break;}W25QXX_CS(0);SPI2_ReadWriteByte(command); //send commandSPI2_ReadWriteByte(d); //write dataW25QXX_CS(1); } //W25QXX write enable void W25QXX_Write_Enable(void) {W25QXX_CS(0);SPI2_ReadWriteByte(W25X_WriteEnable);W25QXX_CS(1); } //W25QXX write disable void W25QXX_Write_Disable(void) {W25QXX_CS(0);SPI2_ReadWriteByte(W25X_WriteDisable);W25QXX_CS(1); }//Read chip ID //return: //0XEF13 for W25Q80 //0XEF14 for W25Q16 //0XEF15 for W25Q32 //0XEF16 for W25Q64 //0XEF17 for W25Q128 //0XEF18 for W25Q256 uint16_t W25QXX_ReadID(void) {uint16_t Temp 0;W25QXX_CS(0);SPI2_ReadWriteByte(0x90); //send commandSPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);Temp|SPI2_ReadWriteByte(0xFF)8; //read high byte dataTemp|SPI2_ReadWriteByte(0xFF); //read low byte dataW25QXX_CS(1);return Temp; } //Read W25QXX from specific address for specific byte length //pBuffer: data buffer //ReadAddr: specific address //NumByteToRead: specific byte length (max 65535) void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead) {uint16_t i;W25QXX_CS(0);SPI2_ReadWriteByte(W25X_ReadData); //send read commandif((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)) //send highest 8-bit address{SPI2_ReadWriteByte((uint8_t)((ReadAddr)24));}SPI2_ReadWriteByte((uint8_t)((ReadAddr)16)); //send 24-bit addressSPI2_ReadWriteByte((uint8_t)((ReadAddr)8));SPI2_ReadWriteByte((uint8_t)ReadAddr);for(i0;iNumByteToRead;i){pBuffer[i]SPI2_ReadWriteByte(0XFF); //read data}W25QXX_CS(1); }//Write W25QXX not more than 1 page (256 bytes) //pBuffer: data buffer //WriteAddr: specific address //NumByteToWrite: specific byte length (max 256) void W25QXX_Write_Page(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite) {uint16_t i;W25QXX_Write_Enable(); //write enableW25QXX_CS(0);SPI2_ReadWriteByte(W25X_PageProgram); //send write commandif((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)) //send highest 8-bit address{SPI2_ReadWriteByte((uint8_t)((WriteAddr)24));}SPI2_ReadWriteByte((uint8_t)((WriteAddr)16)); //send 24-bit addressSPI2_ReadWriteByte((uint8_t)((WriteAddr)8));SPI2_ReadWriteByte((uint8_t)WriteAddr);for(i0;iNumByteToWrite;i)SPI2_ReadWriteByte(pBuffer[i]); //write dataW25QXX_CS(1);W25QXX_Wait_Busy(); }//Write W25QXX w/o erase check and w/o byte number restriction //pBuffer: data buffer //WriteAddr: specific address //NumByteToWrite: specific byte length (max 65535) void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite) {uint16_t remained_byte_num_in_page;remained_byte_num_in_page256-WriteAddr%256; //remained byte number in pageif( NumByteToWrite remained_byte_num_in_page ) remained_byte_num_in_page NumByteToWrite; //data can be written in single pagewhile(1){W25QXX_Write_Page(pBuffer,WriteAddr,remained_byte_num_in_page);if(NumByteToWriteremained_byte_num_in_page)break; //end write operationelse //NumByteToWriteremained_byte_num_in_page{pBufferremained_byte_num_in_page;WriteAddrremained_byte_num_in_page;NumByteToWrite-remained_byte_num_in_page;if(NumByteToWrite256)remained_byte_num_in_page256; //for whole page writeelse remained_byte_num_in_pageNumByteToWrite; //for non-whole page write}}; }//Write W25QXX w/ erase after check and w/o byte number restriction //pBuffer: data buffer //WriteAddr: specific address //NumByteToWrite: specific byte length (max 65535) uint8_t W25QXX_BUFFER[4096]; void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite) {uint32_t secpos;uint16_t secoff;uint16_t secremain;uint16_t i;uint8_t * W25QXX_BUF;W25QXX_BUFW25QXX_BUFFER;secposWriteAddr/4096; //sector number (16 pages for 1 sector) for destination addresssecoffWriteAddr%4096; //offset address in sector for destination addresssecremain4096-secoff; //remained space for sectorif(NumByteToWritesecremain)secremainNumByteToWrite; //data can be written in single sectorwhile(1){W25QXX_Read(W25QXX_BUF,secpos*4096,4096); //read sector data for ease necessity judgmentfor(i0;isecremain;i) //check sector data status{if(W25QXX_BUF[secoffi]!0XFF) break; //ease necessary}if(isecremain) //for ease{W25QXX_Erase_Sector(secpos); //ease sectorfor(i0;isecremain;i) //data copy{W25QXX_BUF[isecoff]pBuffer[i];}W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096); //write sector}else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain); //write data for sector unnecessary to eraseif(NumByteToWritesecremain)break; //for operation endelse //for operation continuing{secpos; //sector number 1secoff0; //offset address from 0pBuffersecremain; //pointer adjustmentWriteAddrsecremain; //write address adjustmentNumByteToWrite-secremain; //write number adjustmentif(NumByteToWrite4096) secremain4096; //not last sectorelse secremainNumByteToWrite; //last sector}}; }//Erase whole chip, long waiting... void W25QXX_Erase_Chip(void) {W25QXX_Write_Enable(); //write enableW25QXX_Wait_Busy();W25QXX_CS(0);SPI2_ReadWriteByte(W25X_ChipErase); //send erase commandW25QXX_CS(1);W25QXX_Wait_Busy(); //wait for erase complete }//Erase one sector //Sector_Num: sector number void W25QXX_Erase_Sector(uint32_t Sector_Num) {Sector_Num*4096;W25QXX_Write_Enable(); //write enableW25QXX_Wait_Busy();W25QXX_CS(0);SPI2_ReadWriteByte(W25X_SectorErase); //send erase commandif((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)) //send highest 8-bit address{SPI2_ReadWriteByte((uint8_t)((Sector_Num)24));}SPI2_ReadWriteByte((uint8_t)((Sector_Num)16)); //send 24-bit addressSPI2_ReadWriteByte((uint8_t)((Sector_Num)8));SPI2_ReadWriteByte((uint8_t)Sector_Num);W25QXX_CS(1);W25QXX_Wait_Busy(); //wait for erase complete }//Wait idle status before next operation void W25QXX_Wait_Busy(void) {while((W25QXX_ReadSR(1)0x01)0x01); //wait for busy flag cleared }//Enter power-down mode #define tDP_us 3 void W25QXX_PowerDown(void) {W25QXX_CS(0);SPI2_ReadWriteByte(W25X_PowerDown); //send power-down commandW25QXX_CS(1);PY_Delay_us_t(tDP_us); //tDP } //Wake-up #define tRES1_us 3 void W25QXX_WAKEUP(void) {W25QXX_CS(0);SPI2_ReadWriteByte(W25X_ReleasePowerDown);//send release power-down commandW25QXX_CS(1);PY_Delay_us_t(tRES1_us); //tRES1 }对ffconf.h添加包含信息 #include main.h #include stm32h7xx_hal.h修改user_diskio.c对文件操作函数与底层FLASH读写提供连接 /* USER CODE BEGIN Header */ /********************************************************************************* file user_diskio.c* brief This file includes a diskio driver skeleton to be completed by the user.******************************************************************************* attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************//* USER CODE END Header */#ifdef USE_OBSOLETE_USER_CODE_SECTION_0 /** Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0)* To be suppressed in the future.* Kept to ensure backward compatibility with previous CubeMx versions when* migrating projects.* User code previously added there should be copied in the new user sections before* the section contents can be deleted.*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ #endif/* USER CODE BEGIN DECL */ /**************************SELF DEFINITION PART************/ #include diskio.h /* Declarations of disk functions */ #include W25QXX.h /**********************************************************/ /* Includes ------------------------------------------------------------------*/ #include string.h #include ff_gen_drv.h/* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*//* Private variables ---------------------------------------------------------*/ /* Disk status */ static volatile DSTATUS Stat STA_NOINIT;/* USER CODE END DECL *//* Private function prototypes -----------------------------------------------*/ DSTATUS USER_initialize (BYTE pdrv); DSTATUS USER_status (BYTE pdrv); DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count); #if _USE_WRITE 1DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count); #endif /* _USE_WRITE 1 */ #if _USE_IOCTL 1DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff); #endif /* _USE_IOCTL 1 */Diskio_drvTypeDef USER_Driver {USER_initialize,USER_status,USER_read, #if _USE_WRITEUSER_write, #endif /* _USE_WRITE 1 */ #if _USE_IOCTL 1USER_ioctl, #endif /* _USE_IOCTL 1 */ };/* Private functions ---------------------------------------------------------*//*** brief Initializes a Drive* param pdrv: Physical drive number (0..)* retval DSTATUS: Operation status*/ DSTATUS USER_initialize (BYTE pdrv /* Physical drive nmuber to identify the drive */ ) {/* USER CODE BEGIN INIT *//**************************SELF DEFINITION PART************/uint8_t res;res W25QXX_Init();if(res) return RES_OK;else return STA_NOINIT;/**********************************************************//*Stat STA_NOINIT;return Stat;*//* USER CODE END INIT */ }/*** brief Gets Disk Status* param pdrv: Physical drive number (0..)* retval DSTATUS: Operation status*/ DSTATUS USER_status (BYTE pdrv /* Physical drive number to identify the drive */ ) {/* USER CODE BEGIN STATUS *//**************************SELF DEFINITION PART************/switch (pdrv){case 0 :return RES_OK;case 1 :return RES_OK;case 2 :return RES_OK;default:return STA_NOINIT;}/**********************************************************//*Stat STA_NOINIT;return Stat;*//* USER CODE END STATUS */ }/*** brief Reads Sector(s)* param pdrv: Physical drive number (0..)* param *buff: Data buffer to store read data* param sector: Sector address (LBA)* param count: Number of sectors to read (1..128)* retval DRESULT: Operation result*/ DRESULT USER_read (BYTE pdrv, /* Physical drive nmuber to identify the drive */BYTE *buff, /* Data buffer to store read data */DWORD sector, /* Sector address in LBA */UINT count /* Number of sectors to read */ ) {/* USER CODE BEGIN READ *//**************************SELF DEFINITION PART************/uint16_t len;if( !count ){return RES_PARERR; /* count不能等于0否则返回参数错误 */}switch (pdrv){case 0:sector 9; //Convert sector number to byte addresslen count*512;W25QXX_Read(buff, sector, len);return RES_OK;default:return RES_ERROR;}/**********************************************************//*return RES_OK;*//* USER CODE END READ */ }/*** brief Writes Sector(s)* param pdrv: Physical drive number (0..)* param *buff: Data to be written* param sector: Sector address (LBA)* param count: Number of sectors to write (1..128)* retval DRESULT: Operation result*/ #if _USE_WRITE 1 DRESULT USER_write (BYTE pdrv, /* Physical drive nmuber to identify the drive */const BYTE *buff, /* Data to be written */DWORD sector, /* Sector address in LBA */UINT count /* Number of sectors to write */ ) {/* USER CODE BEGIN WRITE *//* USER CODE HERE *//**************************SELF DEFINITION PART************/uint16_t len;if( !count ){return RES_PARERR; /* count不能等于0否则返回参数错误 */}switch (pdrv){case 0:sector 9; //Convert sector number to byte addresslen count*512;W25QXX_Write((uint8_t *)buff, sector, len);return RES_OK;default:return RES_ERROR;}/*********************************************************//*return RES_OK;*//* USER CODE END WRITE */ } #endif /* _USE_WRITE 1 *//*** brief I/O control operation* param pdrv: Physical drive number (0..)* param cmd: Control code* param *buff: Buffer to send/receive control data* retval DRESULT: Operation result*/ #if _USE_IOCTL 1 DRESULT USER_ioctl (BYTE pdrv, /* Physical drive nmuber (0..) */BYTE cmd, /* Control code */void *buff /* Buffer to send/receive control data */ ) {/* USER CODE BEGIN IOCTL *//**************************SELF DEFINITION PART************/#define user_sector_byte_size 512DRESULT res;switch(cmd){case CTRL_SYNC:W25QXX_Wait_Busy();resRES_OK;break;case GET_SECTOR_SIZE:*(WORD*)buff user_sector_byte_size;res RES_OK;break;case GET_BLOCK_SIZE:*(WORD*)buff 4096/user_sector_byte_size;res RES_OK;break;case GET_SECTOR_COUNT:W25QXX_TYPEW25QXX_ReadID();if(W25QXX_TYPEW25Q80_ID) *(DWORD*)buff (8*1024*1024/512);else if(W25QXX_TYPEW25Q16_ID) *(DWORD*)buff (16*1024*1024/512);else if(W25QXX_TYPEW25Q32_ID) *(DWORD*)buff (32*1024*1024/512);else if(W25QXX_TYPEW25Q64_ID) *(DWORD*)buff (64*1024*1024/512);else if(W25QXX_TYPEW25Q128_ID) *(DWORD*)buff (128*1024*1024/512);else if(W25QXX_TYPEW25Q256_ID) *(DWORD*)buff (256*1024*1024/512);else if(W25QXX_TYPEW25Q512_ID) *(DWORD*)buff (512*1024*1024/512);else if(W25QXX_TYPEW25Q1024_ID) *(DWORD*)buff (1024*1024*1024/512);else *(DWORD*)buff (8*1024*1024/512);res RES_OK;break;default:res RES_PARERR;break;}return res;/**********************************************************//*DRESULT res RES_ERROR;return res;*//* USER CODE END IOCTL */ } #endif /* _USE_IOCTL 1 */ 上面配置的FATS协议是用户可操作的显式协议譬如本例程通过串口发送指令后控制对FLASH的FATS操作。STM32的U盘接口相当于包含对PC端的握手协议和对内部的隐式FATS协议还需要配置底层对针对的存储单元读写操作函数。 配置U盘接口包含如下部分 引入头文件申明 设置U盘识别的大小参数 这里0x4000对应16K0x200对应512字节 16K*5128M 所以U盘会识别为8MB的U盘。 然后是U盘初始化的设置 U盘识别时获取U盘容量的函数 然后再配置读操作和写操作函数 完整的代码如下 /* USER CODE BEGIN Header */ /********************************************************************************* file : usbd_storage_if.c* version : v1.0_Cube* brief : Memory management layer.******************************************************************************* attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/ /* USER CODE END Header *//* Includes ------------------------------------------------------------------*/ #include usbd_storage_if.h/* USER CODE BEGIN INCLUDE */ #include W25QXX.h /* USER CODE END INCLUDE *//* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*//* USER CODE BEGIN PV */ /* Private variables ---------------------------------------------------------*//* USER CODE END PV *//** addtogroup STM32_USB_OTG_DEVICE_LIBRARY* brief Usb device.* {*//** defgroup USBD_STORAGE* brief Usb mass storage device module* {*//** defgroup USBD_STORAGE_Private_TypesDefinitions* brief Private types.* {*//* USER CODE BEGIN PRIVATE_TYPES */ #if 0 /* USER CODE END PRIVATE_TYPES *//*** }*//** defgroup USBD_STORAGE_Private_Defines* brief Private defines.* {*/#define STORAGE_LUN_NBR 1 #define STORAGE_BLK_NBR 0x10000 #define STORAGE_BLK_SIZ 0x200/* USER CODE BEGIN PRIVATE_DEFINES */ #endif#define STORAGE_LUN_NBR 1 //STORAGE_LUN_NBR : disk number #define STORAGE_BLK_NBR 0x4000 //STORAGE_BLK_NBR : block number #define STORAGE_BLK_SIZ 0x200 //STORAGE_BLK_SIZ : block size /* USER CODE END PRIVATE_DEFINES *//*** }*//** defgroup USBD_STORAGE_Private_Macros* brief Private macros.* {*//* USER CODE BEGIN PRIVATE_MACRO *//* USER CODE END PRIVATE_MACRO *//*** }*//** defgroup USBD_STORAGE_Private_Variables* brief Private variables.* {*//* USER CODE BEGIN INQUIRY_DATA_FS */ /** USB Mass storage Standard Inquiry Data. */ const int8_t STORAGE_Inquirydata_FS[] {/* 36 *//* LUN 0 */0x00,0x80,0x02,0x02,(STANDARD_INQUIRY_DATA_LEN - 5),0x00,0x00,0x00,S, T, M, , , , , , /* Manufacturer : 8 bytes */P, r, o, d, u, c, t, , /* Product : 16 Bytes */ , , , , , , , ,0, ., 0 ,1 /* Version : 4 Bytes */ }; /* USER CODE END INQUIRY_DATA_FS *//* USER CODE BEGIN PRIVATE_VARIABLES *//* USER CODE END PRIVATE_VARIABLES *//*** }*//** defgroup USBD_STORAGE_Exported_Variables* brief Public variables.* {*/extern USBD_HandleTypeDef hUsbDeviceFS;/* USER CODE BEGIN EXPORTED_VARIABLES *//* USER CODE END EXPORTED_VARIABLES *//*** }*//** defgroup USBD_STORAGE_Private_FunctionPrototypes* brief Private functions declaration.* {*/static int8_t STORAGE_Init_FS(uint8_t lun); static int8_t STORAGE_GetCapacity_FS(uint8_t lun, uint32_t *block_num, uint16_t *block_size); static int8_t STORAGE_IsReady_FS(uint8_t lun); static int8_t STORAGE_IsWriteProtected_FS(uint8_t lun); static int8_t STORAGE_Read_FS(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len); static int8_t STORAGE_Write_FS(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len); static int8_t STORAGE_GetMaxLun_FS(void);/* USER CODE BEGIN PRIVATE_FUNCTIONS_DECLARATION *//* USER CODE END PRIVATE_FUNCTIONS_DECLARATION *//*** }*/USBD_StorageTypeDef USBD_Storage_Interface_fops_FS {STORAGE_Init_FS,STORAGE_GetCapacity_FS,STORAGE_IsReady_FS,STORAGE_IsWriteProtected_FS,STORAGE_Read_FS,STORAGE_Write_FS,STORAGE_GetMaxLun_FS,(int8_t *)STORAGE_Inquirydata_FS };/* Private functions ---------------------------------------------------------*/ /*** brief Initializes the storage unit (medium) over USB FS IP* param lun: Logical unit number.* retval USBD_OK if all operations are OK else USBD_FAIL*/ int8_t STORAGE_Init_FS(uint8_t lun) {/* USER CODE BEGIN 2 *///UNUSED(lun);W25QXX_Init();return (USBD_OK);/* USER CODE END 2 */ }/*** brief Returns the medium capacity.* param lun: Logical unit number.* param block_num: Number of total block number.* param block_size: Block size.* retval USBD_OK if all operations are OK else USBD_FAIL*/ int8_t STORAGE_GetCapacity_FS(uint8_t lun, uint32_t *block_num, uint16_t *block_size) {/* USER CODE BEGIN 3 *///UNUSED(lun);*block_num STORAGE_BLK_NBR;*block_size STORAGE_BLK_SIZ;return (USBD_OK);/* USER CODE END 3 */ }/*** brief Checks whether the medium is ready.* param lun: Logical unit number.* retval USBD_OK if all operations are OK else USBD_FAIL*/ int8_t STORAGE_IsReady_FS(uint8_t lun) {/* USER CODE BEGIN 4 *///UNUSED(lun);return (USBD_OK);/* USER CODE END 4 */ }/*** brief Checks whether the medium is write protected.* param lun: Logical unit number.* retval USBD_OK if all operations are OK else USBD_FAIL*/ int8_t STORAGE_IsWriteProtected_FS(uint8_t lun) {/* USER CODE BEGIN 5 *///UNUSED(lun);return (USBD_OK);/* USER CODE END 5 */ }/*** brief Reads data from the medium.* param lun: Logical unit number.* param buf: data buffer.* param blk_addr: Logical block address.* param blk_len: Blocks number.* retval USBD_OK if all operations are OK else USBD_FAIL*/ int8_t STORAGE_Read_FS(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len) {/* USER CODE BEGIN 6 *///UNUSED(lun);//UNUSED(buf);//UNUSED(blk_addr);//UNUSED(blk_len);W25QXX_Read(buf, blk_addr*STORAGE_BLK_SIZ, blk_len*STORAGE_BLK_SIZ);return (USBD_OK);/* USER CODE END 6 */ }/*** brief Writes data into the medium.* param lun: Logical unit number.* param buf: data buffer.* param blk_addr: Logical block address.* param blk_len: Blocks number.* retval USBD_OK if all operations are OK else USBD_FAIL*/ int8_t STORAGE_Write_FS(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len) {/* USER CODE BEGIN 7 *///UNUSED(lun);//UNUSED(buf);//UNUSED(blk_addr);//UNUSED(blk_len);W25QXX_Write(buf, blk_addr*STORAGE_BLK_SIZ, blk_len*STORAGE_BLK_SIZ);return (USBD_OK);/* USER CODE END 7 */ }/*** brief Returns the Max Supported LUNs.* param None* retval Lun(s) number.*/ int8_t STORAGE_GetMaxLun_FS(void) {/* USER CODE BEGIN 8 */return (STORAGE_LUN_NBR - 1);/* USER CODE END 8 */ }/* USER CODE BEGIN PRIVATE_FUNCTIONS_IMPLEMENTATION *//* USER CODE END PRIVATE_FUNCTIONS_IMPLEMENTATION *//*** }*//*** }*/ 番外由上面的设置可以看出设计扩容盘的方式如把8M的盘扩容成64M则进行两步操作即可 将STORAGE_BLK_NBR放大8倍从而盘容量识别扩大为64M在读写函数里对操作地址进行处理即把操作地址对8M空间取余这样刚过8M尾部空间的操作就会跳到头部空间进行当然如果是写操作就会产生覆盖 扩容盘是一种循环访问非常规方式一般在行车记录仪等监控领域出现较多用户想存储更长时间的数据但实际上要查数据时都是近期数据扩容盘能够保持对近期数据的记录因此不良商家卖出扩容盘非法牟利。扩容盘的缺点是实际容量小于标称容量要查远期数据是被覆盖丢失的另一个缺点是如果一个文件正好存储时跨过了实际容量尾部那么这个文件对PC端时损坏文件不能读取如果正好这个近期文件是重要取证文件则是不良事件。 然后在main.c里根据串口输入命令16进制单字节实现如下功能 0x01. 读取FLASH ID 0x02. 装载FATS文件系统 0x03: 创建/打开文件并从头位置写入数据 0x04: 打开文件并从头位置读入数据 0x05: 创建/打开文件并从特定位置写入数据 0x06: 打开文件并从特定位置读入数据 完整的代码实现如下 /* USER CODE BEGIN Header */ /********************************************************************************* file : main.c* brief : Main program body******************************************************************************* attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/ //Written by Pegasus Yu in 2023 /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include main.h #include fatfs.h #include usb_device.h/* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include usart.h #include W25QXX.h #include string.h /* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ __IO float usDelayBase; void PY_usDelayTest(void) {__IO uint32_t firstms, secondms;__IO uint32_t counter 0;firstms HAL_GetTick()1;secondms firstms1;while(uwTick!firstms) ;while(uwTick!secondms) counter;usDelayBase ((float)counter)/1000; }void PY_Delay_us_t(uint32_t Delay) {__IO uint32_t delayReg;__IO uint32_t usNum (uint32_t)(Delay*usDelayBase);delayReg 0;while(delayReg!usNum) delayReg; }void PY_usDelayOptimize(void) {__IO uint32_t firstms, secondms;__IO float coe 1.0;firstms HAL_GetTick();PY_Delay_us_t(1000000) ;secondms HAL_GetTick();coe ((float)1000)/(secondms-firstms);usDelayBase coe*usDelayBase; }void PY_Delay_us(uint32_t Delay) {__IO uint32_t delayReg;__IO uint32_t msNum Delay/1000;__IO uint32_t usNum (uint32_t)((Delay%1000)*usDelayBase);if(msNum0) HAL_Delay(msNum);delayReg 0;while(delayReg!usNum) delayReg; } /* USER CODE END PTD *//* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD *//* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/SPI_HandleTypeDef hspi2;UART_HandleTypeDef huart1;/* USER CODE BEGIN PV */ uint8_t uart1_rx[16]; uint8_t cmd;uint8_t Flash_mount_status 0; //FLASH fats mount status indication (0: unmount; 1: mount) uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operationFRESULT retFLASH; FIL file; FATFS *fs;UINT bytesread; UINT byteswritten; uint8_t rBuffer[20]; //Buffer for read uint8_t WBuffer[20] {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write#define user_sector_byte_size 512 uint8_t flashbuffer[user_sector_byte_size];extern char USERPath[4]; /* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void PeriphCommonClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); static void MX_SPI2_Init(void); /* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 *//* USER CODE END 0 *//*** brief The application entry point.* retval int*/ int main(void) {/* USER CODE BEGIN 1 */Flash_mount_status 0;uint32_t FLASH_Read_Size;char * dpath 0:; //Disk Pathfor(uint8_t i0; i4; i){USERPath[i] *(dpathi);}const TCHAR* filepath 0:test.txt;/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* Configure the peripherals common clocks */PeriphCommonClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_SPI2_Init();MX_FATFS_Init();MX_USB_DEVICE_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();HAL_UART_Receive_IT(huart1, uart1_rx, 1);W25QXX_Init();/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(cmd1) //Read ID{cmd 0;printf(FLASH ID0x%x\r\n\r\n, W25QXX_ReadID());printf(W25Q80_ID: 0XEF13\r\n);printf(W25Q16_ID: 0XEF14\r\n);printf(W25Q32_ID: 0XEF15\r\n);printf(W25Q64_ID: 0XEF16\r\n);printf(W25Q128_ID: 0XEF17\r\n);printf(W25Q256_ID: 0XEF18\r\n);printf(W25Q512_ID: 0XEF18\r\n);printf(W25Q1024_ID: 0XEF20\r\n);}else if(cmd2) //Flash File System Mount{cmd 0;retFLASHf_mount(USERFatFS, (TCHAR const*)USERPath, 1);if (retFLASH ! FR_OK){printf(File system mount failure: %d\r\n, retFLASH);if(retFLASHFR_NO_FILESYSTEM){printf(No file system. Now to format......\r\n);retFLASH f_mkfs((TCHAR const*)USERPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //FLASH formattingif(retFLASH FR_OK){printf(FLASH formatting success!\r\n);}else{printf(FLASH formatting failure!\r\n);}}}else{Flash_mount_status 1;printf(File system mount success\r\n);}}else if(cmd3) //File creation and write{cmd 0;if(Flash_mount_status0) printf(\r\nFLASH File system not mounted: %d\r\n,retFLASH);else{retFLASH f_open( file, filepath, FA_CREATE_ALWAYS | FA_WRITE ); //Open or create fileif(retFLASH FR_OK){printf(\r\nFile open or creation successful\r\n);retFLASH f_write( file, (const void *)WBuffer, sizeof(WBuffer), byteswritten); //Write dataif(retFLASH FR_OK){printf(\r\nFile write successful\r\n);}else{printf(\r\nFile write error: %d\r\n,retFLASH);}f_close(file); //Close file}else{printf(\r\nFile open or creation error %d\r\n,retFLASH);}}}else if(cmd4) //File read{cmd 0;if(Flash_mount_status0) printf(\r\nFLASH File system not mounted: %d\r\n,retFLASH);else{retFLASH f_open( file, filepath, FA_OPEN_EXISTING | FA_READ); //Open fileif(retFLASH FR_OK){printf(\r\nFile open successful\r\n);retFLASH f_read( file, (void *)rBuffer, sizeof(rBuffer), bytesread); //Read dataif(retFLASH FR_OK){printf(\r\nFile read successful\r\n);PY_Delay_us_t(200000);FLASH_Read_Size sizeof(rBuffer);for(uint16_t i 0;i FLASH_Read_Size;i){printf(%d , rBuffer[i]);}printf(\r\n);}else{printf(\r\nFile read error: %d\r\n, retFLASH);}f_close(file); //Close file}else{printf(\r\nFile open error: %d\r\n, retFLASH);}}}else if(cmd5) //File locating write{cmd 0;if(Flash_mount_status0) printf(\r\nFLASH File system not mounted: %d\r\n,retFLASH);else{retFLASH f_open( file, filepath, FA_CREATE_ALWAYS | FA_WRITE); //Open or create fileif(retFLASH FR_OK){printf(\r\nFile open or creation successful\r\n);retFLASHf_lseek( file, f_tell(file) sizeof(WBuffer) ); //move file operation pointer, f_tell(file) gets file head locatingif(retFLASH FR_OK){retFLASH f_write( file, (const void *)WBuffer, sizeof(WBuffer), byteswritten);if(retFLASH FR_OK){printf(\r\nFile locating write successful\r\n);}else{printf(\r\nFile locating write error: %d\r\n, retFLASH);}}else{printf(\r\nFile pointer error: %d\r\n,retFLASH);}f_close(file); //Close file}else{printf(\r\nFile open or creation error %d\r\n,retFLASH);}}}else if(cmd6) //File locating read{cmd 0;if(Flash_mount_status0) printf(\r\nFLASH File system not mounted: %d\r\n,retFLASH);else{retFLASH f_open(file, filepath, FA_OPEN_EXISTING | FA_READ); //Open fileif(retFLASH FR_OK){printf(\r\nFile open successful\r\n);retFLASH f_lseek(file,f_tell(file) sizeof(WBuffer)/2); //move file operation pointer, f_tell(file) gets file head locatingif(retFLASH FR_OK){retFLASH f_read( file, (void *)rBuffer, sizeof(rBuffer), bytesread);if(retFLASH FR_OK){printf(\r\nFile locating read successful\r\n);PY_Delay_us_t(200000);FLASH_Read_Size sizeof(rBuffer);for(uint16_t i 0;i FLASH_Read_Size;i){printf(%d ,rBuffer[i]);}printf(\r\n);}else{printf(\r\nFile locating read error: %d\r\n,retFLASH);}}else{printf(\r\nFile pointer error: %d\r\n,retFLASH);}f_close(file);}else{printf(\r\nFile open error: %d\r\n,retFLASH);}}}/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */ }/*** brief System Clock Configuration* retval None*/ void SystemClock_Config(void) {RCC_OscInitTypeDef RCC_OscInitStruct {0};RCC_ClkInitTypeDef RCC_ClkInitStruct {0};/** Supply configuration update enable*/HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);/** Configure the main internal regulator output voltage*/__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}__HAL_RCC_SYSCFG_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType RCC_OSCILLATORTYPE_HSI48|RCC_OSCILLATORTYPE_HSI;RCC_OscInitStruct.HSIState RCC_HSI_DIV1;RCC_OscInitStruct.HSICalibrationValue RCC_HSICALIBRATION_DEFAULT;RCC_OscInitStruct.HSI48State RCC_HSI48_ON;RCC_OscInitStruct.PLL.PLLState RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource RCC_PLLSOURCE_HSI;RCC_OscInitStruct.PLL.PLLM 4;RCC_OscInitStruct.PLL.PLLN 60;RCC_OscInitStruct.PLL.PLLP 2;RCC_OscInitStruct.PLL.PLLQ 2;RCC_OscInitStruct.PLL.PLLR 2;RCC_OscInitStruct.PLL.PLLRGE RCC_PLL1VCIRANGE_3;RCC_OscInitStruct.PLL.PLLVCOSEL RCC_PLL1VCOWIDE;RCC_OscInitStruct.PLL.PLLFRACN 0;if (HAL_RCC_OscConfig(RCC_OscInitStruct) ! HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;RCC_ClkInitStruct.SYSCLKSource RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.SYSCLKDivider RCC_SYSCLK_DIV1;RCC_ClkInitStruct.AHBCLKDivider RCC_HCLK_DIV2;RCC_ClkInitStruct.APB3CLKDivider RCC_APB3_DIV2;RCC_ClkInitStruct.APB1CLKDivider RCC_APB1_DIV2;RCC_ClkInitStruct.APB2CLKDivider RCC_APB2_DIV2;RCC_ClkInitStruct.APB4CLKDivider RCC_APB4_DIV2;if (HAL_RCC_ClockConfig(RCC_ClkInitStruct, FLASH_LATENCY_4) ! HAL_OK){Error_Handler();} }/*** brief Peripherals Common Clock Configuration* retval None*/ void PeriphCommonClock_Config(void) {RCC_PeriphCLKInitTypeDef PeriphClkInitStruct {0};/** Initializes the peripherals clock*/PeriphClkInitStruct.PeriphClockSelection RCC_PERIPHCLK_CKPER;PeriphClkInitStruct.CkperClockSelection RCC_CLKPSOURCE_HSI;if (HAL_RCCEx_PeriphCLKConfig(PeriphClkInitStruct) ! HAL_OK){Error_Handler();} }/*** brief SPI2 Initialization Function* param None* retval None*/ static void MX_SPI2_Init(void) {/* USER CODE BEGIN SPI2_Init 0 *//* USER CODE END SPI2_Init 0 *//* USER CODE BEGIN SPI2_Init 1 *//* USER CODE END SPI2_Init 1 *//* SPI2 parameter configuration*/hspi2.Instance SPI2;hspi2.Init.Mode SPI_MODE_MASTER;hspi2.Init.Direction SPI_DIRECTION_2LINES;hspi2.Init.DataSize SPI_DATASIZE_8BIT;hspi2.Init.CLKPolarity SPI_POLARITY_LOW;hspi2.Init.CLKPhase SPI_PHASE_1EDGE;hspi2.Init.NSS SPI_NSS_SOFT;hspi2.Init.BaudRatePrescaler SPI_BAUDRATEPRESCALER_2;hspi2.Init.FirstBit SPI_FIRSTBIT_MSB;hspi2.Init.TIMode SPI_TIMODE_DISABLE;hspi2.Init.CRCCalculation SPI_CRCCALCULATION_DISABLE;hspi2.Init.CRCPolynomial 0x0;hspi2.Init.NSSPMode SPI_NSS_PULSE_ENABLE;hspi2.Init.NSSPolarity SPI_NSS_POLARITY_LOW;hspi2.Init.FifoThreshold SPI_FIFO_THRESHOLD_01DATA;hspi2.Init.TxCRCInitializationPattern SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;hspi2.Init.RxCRCInitializationPattern SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;hspi2.Init.MasterSSIdleness SPI_MASTER_SS_IDLENESS_00CYCLE;hspi2.Init.MasterInterDataIdleness SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;hspi2.Init.MasterReceiverAutoSusp SPI_MASTER_RX_AUTOSUSP_DISABLE;hspi2.Init.MasterKeepIOState SPI_MASTER_KEEP_IO_STATE_DISABLE;hspi2.Init.IOSwap SPI_IO_SWAP_DISABLE;if (HAL_SPI_Init(hspi2) ! HAL_OK){Error_Handler();}/* USER CODE BEGIN SPI2_Init 2 *//* USER CODE END SPI2_Init 2 */}/*** brief USART1 Initialization Function* param None* retval None*/ static void MX_USART1_UART_Init(void) {/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance USART1;huart1.Init.BaudRate 115200;huart1.Init.WordLength UART_WORDLENGTH_8B;huart1.Init.StopBits UART_STOPBITS_1;huart1.Init.Parity UART_PARITY_NONE;huart1.Init.Mode UART_MODE_TX_RX;huart1.Init.HwFlowCtl UART_HWCONTROL_NONE;huart1.Init.OverSampling UART_OVERSAMPLING_16;huart1.Init.OneBitSampling UART_ONE_BIT_SAMPLE_DISABLE;huart1.Init.ClockPrescaler UART_PRESCALER_DIV1;huart1.AdvancedInit.AdvFeatureInit UART_ADVFEATURE_NO_INIT;if (HAL_UART_Init(huart1) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_SetTxFifoThreshold(huart1, UART_TXFIFO_THRESHOLD_1_8) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_SetRxFifoThreshold(huart1, UART_RXFIFO_THRESHOLD_1_8) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_DisableFifoMode(huart1) ! HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** brief GPIO Initialization Function* param None* retval None*/ static void MX_GPIO_Init(void) {GPIO_InitTypeDef GPIO_InitStruct {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOB_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET);/*Configure GPIO pin : PB12 */GPIO_InitStruct.Pin GPIO_PIN_12;GPIO_InitStruct.Mode GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull GPIO_NOPULL;GPIO_InitStruct.Speed GPIO_SPEED_FREQ_VERY_HIGH;HAL_GPIO_Init(GPIOB, GPIO_InitStruct);}/* USER CODE BEGIN 4 */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {if(huarthuart1){cmd uart1_rx[0];HAL_UART_Receive_IT(huart1, uart1_rx, 1);}} /* USER CODE END 4 *//*** brief This function is executed in case of error occurrence.* retval None*/ void Error_Handler(void) {/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */ }#ifdef USE_FULL_ASSERT /*** brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* param file: pointer to the source file name* param line: assert_param error line source number* retval None*/ void assert_failed(uint8_t *file, uint32_t line) {/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf(Wrong parameters value: file %s on line %d\r\n, file, line) *//* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ STM32例程测试 串口指令0x01测试效果如下 串口指令0x02测试效果如下 串口指令0x03测试效果如下 串口指令0x04测试效果如下 串口指令0x05测试效果如下 串口指令0x06测试效果如下 通过串口对FLASH对操作后可以将STM32 USB接口连接到PC, 从PC端可以看到U盘接入打开后可以看到通过串口建立和操作的文件 串口写入文件里的是1~20范围的16进制数据这里显示为非常规字符如果串口写入文件里的是英文字母对应的ASCII码16进制数据文件里也就会显示为英文字母。 当通过U盘形式对文件进行操作后同样也可以再通过串口对U盘形式操作过的文件访问操作。 STM32例程下载 STM32H750VBT6 模拟U盘桥接SPI总线FATS读写FLASH W25QXX例程下载 U盘模式升级方式 一种STM32升级方式为通过模拟U盘从PC端将升级文件(.bin文件)存储进到外部FLASH里STM32重新上电时识别标识从外部FLASH里将版本拷贝进到内部FLASH跳转空间然后跳转执行。这是IAP升级的U盘接口常见方式可以参考串口IAP升级过程主要区别是版本数据获得方式不同。 一个不复杂的问题是为什么不从PC端直接写入.bin文件进到内部FLASH里因为文件管理系统会占用额外的空间也会导致文件放置首地址跳转地址易变因此对MCU有限的内部FLASH空间而言不利资源使用。 –End–
http://www.dnsts.com.cn/news/231908.html

相关文章:

  • 淘宝客网站建设任务店铺网络推广有哪些渠道
  • 中小企业的网站建设微信公众平台官方网站登录
  • 网站内容图片怎么做wordpress 插件翻译
  • wordpress顶图滑动搜索引擎关键词优化
  • 网站设计的创新点哪有定制开发
  • 用电信固定IP做网站网页设计网站多少钱
  • 做网站电子版报价模板做自己的网站挣钱
  • 连锁餐饮网站开发背景内容网站推广计划书范文
  • 自己做的网站怎么嵌入高德地图建立网站的公司
  • 企业网站模板下载哪家口碑好wordpress 一直加载插件
  • 温州网站推广优化公司iis本地网站
  • 文具用品网站设计规划书深圳自定义网站开发
  • 广西网站建设公司招聘wordpress站长统计插件
  • 珠海免费模板建站公众号引流推广平台
  • 网站开发后台数据库怎么搞服务器网站怎么用
  • 往网站上传照片怎么做网站欢迎页代码
  • 中国建设工程招投标网站沈阳关键字优化公司
  • 申请注册网站网站论坛推广文案怎么做
  • 做外销网站宝安网站建设公司968
  • 建设银行亚洲官方网站南京学校网站建设策划
  • 永久域名注册网站网站制作在线版
  • 戚墅堰网站建设中国移动app下载
  • 一句话介绍网站开发南昌 提供网站设计 公司
  • 网站一键备份有哪些做留学资讯的网站
  • 网站单个页面做301wordpress 视频 加载
  • 技术网站源码wordpress影视宣传制作公司
  • 京东的网站建设分析无锡 网站建设公司
  • 那个网站可以免费建站网页制作的基本步骤
  • 中国建设银行广东分行网站公众号怎么制作长图
  • 旅游网站系统功能网站模板代理