阿坝住房和城乡建设厅网站,中国最新军事新闻 今天,vi设计的流程,网站建设与管理 市场分析目录一、算法的复杂度二、时间复杂度2.1 什么叫时间复杂度2.2 大O的渐进表示法2.3 计算时间复杂度的练习三、空间复杂度四、常见复杂度的对比一、算法的复杂度
算法在编写成可执行程序后#xff0c;运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏#xf…
目录一、算法的复杂度二、时间复杂度2.1 什么叫时间复杂度2.2 大O的渐进表示法2.3 计算时间复杂度的练习三、空间复杂度四、常见复杂度的对比一、算法的复杂度
算法在编写成可执行程序后运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏一般是从时间和空间两个维度来衡量的即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
二、时间复杂度
2.1 什么叫时间复杂度
在计算机科学中算法的时间复杂度是一个函数它定量描述了该算法的运行时间。一个算法执行所耗费的时间从理论上说是不能算出来的只有你把你的程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗是可以都上机测试但是这很麻烦所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例算法中的基本操作的执行次数为算法的时间复杂度。 即找到某条基本语句与问题规模N之间的数学表达式就是算出了该算法的时间复杂度。 实际中我们计算时间复杂度时我们其实并不一定要计算精确的执行次数而只需要大概执行次数即最高阶的数量级那么这里我们使用大O的渐进表示法。
例如
void Func1(int N)
{int count 0;for (int i 0; i N ; i){for (int j 0; j N ; j){count;}}for (int k 0; k 2 * N ; k){count;}int M 10;while (M--){count;}printf(%d\n, count);
}
该函数一共执行了N^22*N10次取最高阶的数量级那就是N^2
所以该函数的时间复杂度是N^22.2 大O的渐进表示法
大O符号 (Big O notation) 是用于描述函数渐进行为的数学符号。 推导大O阶方法 1、用常数1取代运行时间中的所有加法常数。 2、在修改后的运行次数函数中只保留最高阶项。 3、如果最高阶项存在且不是1则去除与这个项目相乘的常数。得到的结果就是大O阶。
大O的渐进表示法去掉了那些对结果影响不大的项简洁明了的表示出了执行次数。
在一个长度为N数组中搜索一个数据x。 最好情况1次找到 最坏情况N次找到 平均情况N/2次找到 在实际中一般情况关注的是算法的最坏运行情况所以数组中搜索数据时间复杂度为O(N)
2.3 计算时间复杂度的练习
1、
// 计算Func2的时间复杂度
void Func2(int N)
{int count 0;for (int k 0; k 2 * N ; k){count;}int M 10;while (M--){count;}printf(%d\n, count);
}时间复杂度为O(N)2、
// 计算Func3的时间复杂度
void Func3(int N, int M)
{int count 0;for (int k 0; k M; k){count;}for (int k 0; k N ; k){count;}printf(%d\n, count);
}时间复杂度为O(MN)3、
// 计算Func4的时间复杂度
void Func4(int N)
{int count 0;for (int k 0; k 100; k){count;}printf(%d\n, count);
}时间复杂度为O(1)4、
// 计算strchr的时间复杂度
const char * strchr ( const char * str, int character );时间复杂度为O(N)5、
// 计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{assert(a);for (size_t end n; end 0; --end){int exchange 0;for (size_t i 1; i end; i){if (a[i-1] a[i]){Swap(a[i-1], a[i]);exchange 1;}}if (exchange 0)break;}
}时间复杂度为O(N^2)6、
// 计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{assert(a);int begin 0;int end n-1;// [begin, end]begin和end是左闭右闭区间因此有号while (begin end){int mid begin ((end-begin)1);if (a[mid] x)begin mid1;else if (a[mid] x)end mid-1;elsereturn mid;}return -1;
}时间复杂度O(log n)7、
// 计算阶乘递归Fac的时间复杂度
long long Fac(size_t N)
{if(0 N)return 1;return Fac(N-1)*N;
}时间复杂度是O(N)8、
// 计算斐波那契递归Fib的时间复杂度
long long Fib(size_t N)
{if(N 3)return 1;return Fib(N-1) Fib(N-2);
}时间复杂度是O(2^N)三、空间复杂度
空间复杂度也是一个数学表达式是对一个算法在运行过程中临时占用存储空间大小的量度 。 空间复杂度不是程序占用了多少bytes的空间因为这个也没太大意义所以空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟实践复杂度类似也使用大O渐进表示法。 注意函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
示例一
// 计算BubbleSort的空间复杂度
void BubbleSort(int* a, int n)
{assert(a);for (size_t end n; end 0; --end){int exchange 0;for (size_t i 1; i end; i){if (a[i-1] a[i]){Swap(a[i-1], a[i]);exchange 1;}}if (exchange 0)break;}
}空间复杂度为O(1)示例二
// 计算Fibonacci的空间复杂度
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n0)return NULL;long long * fibArray (long long *)malloc((n1) *sizeof(long long));fibArray[0] 0;fibArray[1] 1;for (int i 2; i n ; i){fibArray[i] fibArray[i - 1] fibArray [i - 2];}return fibArray;
}空间复杂度为O(N)示例三
// 计算阶乘递归Fac的空间复杂度
long long Fac(size_t N)
{if(N 0)return 1;return Fac(N-1)*N;
}空间复杂度O(N)四、常见复杂度的对比
一般算法常见的复杂度如下
你学会了吗如果对你有帮助的话请动动您的手指点亮一下小心心哈想学习更多的有关数据结构的内容点点关注哦后期会持续更新哈