当前位置: 首页 > news >正文

做网站贵吗免费友链平台

做网站贵吗,免费友链平台,wordpress主题 时光,给人做网站能赚钱吗5G NR gNB 逻辑架构及其功能拆分选项 中央单元 (CU) 和分布式单元功能拆分选项RAN 分体架构的优势在哪里使用哪个拆分函数#xff1f;参考#xff1a; 5G NR gNB Logical Architecture and It’s Functional Split OptionsCentral Unit (CU) and Distributed Unit Functional… 5G NR gNB 逻辑架构及其功能拆分选项 中央单元 (CU) 和分布式单元功能拆分选项RAN 分体架构的优势在哪里使用哪个拆分函数参考 5G NR gNB Logical Architecture and It’s Functional Split OptionsCentral Unit (CU) and Distributed Unit Functional Split OptionsOption 1 (RRC/PDCP, 1A-like split)Option 2 (PDCP/RLC split)Option 2-1 Split U-plane only (3C like split)Option 2-2 Option 3 (High RLC/Low RLC Split)Option 3-1 Split based on ARQOption 3-2 Split based on TX RLC and RX RLCOption 4 (RLC-MAC split)Option 5 (Intra MAC split)Option 6 (MAC-PHY split)Option 7 (Intra PHY split)Option 8 (PHY-RF split) Benefits of RAN Spilt ArchitectureWhich split function to use where?Reference: https://www.techplayon.com/5g-nr-gnb-logical-architecture-functional-split-options/ gNB 的逻辑架构如下图所示包括中央单元 (CU) 和分布式单元 (DU)。Fs-C 和 Fs-U 通过 Fs 接口提供控制平面和用户平面连接。 在这种架构中中央单元CU和分配单元DU可以定义如下。 中央单元 (CU)它是一个逻辑节点包括 gNB 功能例如用户数据传输、移动性控制、无线接入网络共享、定位、会话管理等但不包括专门分配给 DU 的功能。CU 控制 DU 通过前传 (Fs) 接口的运行。中央单元 (CU) 也可以称为 BBU/REC/RCC/C-RAN/V-RAN 分布式单元 (DU)此逻辑节点包含 gNB 功能的子集具体取决于功能拆分选项。其操作由 CU 控制。分布式单元 (DU) 也被称为 RRH/RRU/RE/RU 等其他名称。 中央单元 (CU) 和分布式单元功能拆分选项 作为新无线电NR研究项目的一部分3GPP 开始研究中央单元和分布式单元之间的不同功能划分。在初始阶段3GPP 以 LTE 协议栈作为讨论的基础直到 RAN2 定义并冻结了新无线电NR的协议栈。他们提出了下图所示的大约 8 种可能选项。 选项 1类似RRC/PCDP 1A 的拆分选项 2PDCP/RLC 拆分类似 3C 拆分选项 3高 RLC/低 RLC分割内部 RLC 分割选项 4RLC-MAC 分离选项 5MAC 内部拆分选项 6MAC-PHY 分离选项 7PHY 内部拆分选项 8PHY-RF 分离 选项 1RRC/PDCP类似 1A 的拆分在此拆分选项中RRC 位于中央单元而 PDCP、RLC、MAC、物理层和 RF 保留在分布式单元中。因此整个用户平面都在分布式单元中。 选项 2PDCP/RLC 分离由于 U 平面相似选项 2 可能是类似 X2 的设计的基础但某些功能可能不同例如 C 平面因为可能需要一些新程序。此选项有两种可能的变体。 选项 2-1 仅分割 U 平面类似 3C 分割在此分割选项中RRC、PDCP 位于中央单元。RLC、MAC、物理层和 RF 位于分布式单元。 选项 2-2在此拆分选项中RRC、PDCP 位于中央单元中。RLC、MAC、物理层和 RF 位于分布式单元中。此外可以通过将 CP 堆栈的 RRC 和 PDCP 以及 UP 堆栈的 PDCP 分离到不同的中央实体中来实现此选项。 选项 3高 RLC/低 RLC 分割在此选项中根据实时/非实时功能分割采用两种方法如下所示 选项 3-1 基于 ARQ 的拆分 选项 3-2 根据 TX RLC 和 RX RLC 进行拆分 选项 3-1 基于 ARQ 的拆分 低RLC可能由分段功能组成 高级RLC可能由ARQ和其他RLC功能组成 此选项将 RLC 子层拆分为高级 RLC 和低级 RLC 子层这样对于 RLC 确认模式操作所有 RLC 功能都可以在位于中央单元的高级 RLC 子层上执行而分段可以在位于分布式单元的低级 RLC 子层上执行。其中高级 RLC 根据状态报告对 RLC PDU 进行分段而低级 RLC 将 RLC PDU 分段到可用的 MAC PDU 资源中。 选项 3-2 根据 TX RLC 和 RX RLC 进行拆分 Low RLC可以由发送TM RLC实体、发送UM RLC实体、发送侧AM以及接收侧AM的路由功能组成与下行传输有关。 高层RLC除了完成与上行传输相关的路由功能和RLC状态报告接收等功能外还可以由接收TM RLC实体、接收UM RLC实体和接收AM侧实体组成。 选项 4RLC-MAC 分离在此分离选项中RRC、PDCP 和 RLC 位于中央单元中。MAC、物理层和 RF 位于分布式单元中。 选项 5MAC 内部拆分 选项 5 假设以下分布 RF、物理层和MAC层下部Low-MAC位于分布式单元中 MAC 层的较高部分 (High-MAC)、RLC 和 PDCP 位于中央单元 因此通过将 MAC 层拆分为 2 个实体例如 High-MAC 和 Low-MACMAC 层提供的服务和功能将位于中央单元 (CU)、分布式单元 (DU) 或两者中。下面给出了此类分布的示例。 在 High-MAC 子层中High-MAC 子层的集中调度将负责多个 Low-MAC 子层的控制。它采取高层集中调度决策。High-MAC 子层中的小区间干扰协调将负责干扰协调方法例如 JP/CS CoMP。 在 Low-MAC 子层中Low-MAC 子层中的时间关键功能包括具有严格延迟要求的功能例如 HARQ或性能与延迟成比例的功能例如来自 PHY 的无线信道和信号测量、随机访问控制。它降低了前传接口的延迟要求。Low-MAC 子层中的无线特定功能可以执行与调度相关的信息处理和报告。它还可以测量/估计配置的操作或服务 UE 的统计数据上的活动并定期或根据请求向 High-MAC 子层报告。 选项 6MAC-PHY 分离 MAC 和上层位于中央单元 (CU)。PHY 层和 RF 位于 DU。CU 和 DU 之间的接口承载数据、配置和调度相关信息例如 MCS、层映射、波束成形、天线配置、资源块分配等和测量。 选项 7PHY 内部分割该选项有多种实现方式包括允许独立获取 UL 和 DL 不同子选项优势的非对称选项。 此选项需要某种压缩技术来减少 DU 和 CU 之间的传输带宽要求。 在 UL 中FFT 和 CP 移除位于 DU 中对于两个子变体7-1 和 7-2 如下所述。其余功能位于 CU 中。 在下行链路中iFFT 和 CP 加法位于 DU 中而 PHY 的其余部分位于 CU 中。 考虑到上述情况此选项有三种子变体可用如下所述 选项 7-1 在此选项中UL、FFT、CP 移除和可能的 PRACH 过滤功能驻留在 DU 中其余 PHY 功能驻留在 CU 中。在 DL 中iFFT 和 CP 添加功能驻留在 DU 中其余 PHY 功能驻留在 CU 中。 选项 7-2 在此选项中UL、FFT、CP 移除、资源解映射和可能的预过滤功能驻留在 DU 中其余 PHY 功能驻留在 CU 中。在 DL 中iFFT、CP 添加、资源映射和预编码功能驻留在 DU 中其余 PHY 功能驻留在 CU 中。 选项 7-3仅适用于 DL只有编码器驻留在 CU 中其余 PHY 功能驻留在 DU 中。 选项 8PHY-RF 分离此选项允许分离 RF 层和 PHY 层。这种分离允许集中所有协议层级别的流程从而实现 RAN 的紧密协调。这允许高效支持 CoMP、MIMO、负载平衡、移动性等功能。 RAN 分体架构的优势 具有在中央和分布式单元之间分割和移动新无线电 (NR) 功能的部署灵活性的架构的一些好处如下 灵活的硬件实现允许可扩展且经济高效的解决方案分离式架构中央单元和分布式单元之间可以协调性能特性、负载管理、实时性能优化并支持 NFV/SDN可配置的功能拆分可适应各种用例例如传输中的可变延迟 在哪里使用哪个拆分函数 如何划分架构中的新无线电 (NR) 功能取决于与无线电网络部署场景、约束和预期支持的服务相关的一些因素。这些因素的一些示例包括 支持每个提供的服务的特定 QoS例如低延迟、高吞吐量支持每个给定地理区域的特定用户密度和负载需求这可能会影响 RAN 协调水平具有不同性能水平的可用性传输网络从理想到非理想应用程序类型例如实时或非实时无线电网络层的特色要求例如 CA、eICIC、CoMP 等。 参考 3GPP TR 38.801 无线接入架构和接口版本 14 5G NR gNB Logical Architecture and It’s Functional Split Options The logical architecture of gNB is shown in figure below with Central Unit (CU) and Distributed Unit (DU). Fs-C and Fs-U provide control plane and user plane connectivity over Fs interface. In this architecture, Central Unit (CU) and Distribution Unit (DU) can be defined as follows. Central Unit (CU): It is a logical node that includes the gNB functions like Transfer of user data, Mobility control, Radio access network sharing, Positioning, Session Management etc., except those functions allocated exclusively to the DU. CU controls the operation of DUs over front-haul (Fs) interface. A central unit (CU) may also be known as BBU/REC/RCC/C-RAN/V-RAN Distributed Unit (DU): This logical node includes a subset of the gNB functions, depending on the functional split option. Its operation is controlled by the CU. Distributed Unit (DU) also known with other names like RRH/RRU/RE/RU. Central Unit (CU) and Distributed Unit Functional Split Options As a part of study item for New Radio (NR), 3GPP started studying different functional splits between central and distributed units. For the initial phase, 3GPP has taken LTE protocol stack as a basis for the discussion, until RAN2 defines and freezes the protocol stack for New Radio (NR). They have proposed about 8 possible options shown in below figure. Option 1 (RRC/PCDP 1A-like split)Option 2 (PDCP/RLC Split 3C-like split)Option 3 (High RLC/Low RLC split, Intra RLC split)Option 4 (RLC-MAC split)Option 5 (Intra MAC split)Option 6 (MAC-PHY split)Option 7 (Intra PHY split)Option 8 (PHY-RF split) Option 1 (RRC/PDCP, 1A-like split) In this split option, RRC is in the central unit while PDCP, RLC, MAC, physical layer and RF are kept in the distributed unit. Thus the entire user plane is in the distributed unit. Option 2 (PDCP/RLC split) Option 2 may be a base for an X2-like design due to similarity on U-plane but some functionality may be different e.g. C-plane since some new procedures may be needed. There are two possible variants available in this option. Option 2-1 Split U-plane only (3C like split) In this split option, RRC, PDCP are in the central unit. RLC, MAC, physical layer and RF are in the distributed unit. Option 2-2 In this split option, RRC, PDCP are in the central unit. RLC, MAC, physical layer and RF are in the distributed unit. In addition, this option can be achieved by separating the RRC and PDCP for the CP stack and the PDCP for the UP stack into different central entities. Option 3 (High RLC/Low RLC Split) In this option, two approaches are taken based on Real time/Non-Real time functions split which are as follows: Option 3-1 Split based on ARQOption 3-2 Split based on TX RLC and RX RLC Option 3-1 Split based on ARQ Low RLC may be composed of segmentation functions;High RLC may be composed of ARQ and other RLC functions; This option splits the RLC sublayer into High RLC and Low RLC sublayers such that for RLC Acknowledge Mode operation, all RLC functions may be performed at the High RLC sublayer residing in the central unit, while the segmentation may be performed at the Low RLC sublayer residing in the distributed unit. Here, High RLC segments RLC PDU based on the status reports while Low RLC segments RLC PDU into the available MAC PDU resources. Option 3-2 Split based on TX RLC and RX RLC Low RLC may be composed of transmitting TM RLC entity, transmitting UM RLC entity, a transmitting side of AM and the routing function of a receiving side of AM, which are related to downlink transmission.High RLC may be composed of receiving TM RLC entity, receiving UM RLC entity and a receiving side of AM except for the routing function and reception of RLC status reports, which are related to uplink transmission. Option 4 (RLC-MAC split) In this split option, RRC, PDCP, and RLC are in the central unit. MAC, physical layer, and RF are in the distributed unit. Option 5 (Intra MAC split) Option 5 assumes the following distribution: RF, physical layer and lower part of the MAC layer (Low-MAC) are in the Distributed UnitHigher part of the MAC layer (High-MAC), RLC and PDCP are in the Central Unit Therefore, by splitting the MAC layer into 2 entities (e.g. High-MAC and Low-MAC), the services and functions provided by the MAC layer will be located in the Central Unit (CU), in the Distributed Unit (DU), or in both. An example of this kind distribution given below. In High-MAC sublayer the centralized scheduling in the High-MAC sublayer will be in charge of the control of multiple Low-MAC sublayers. It takes high-level centralized scheduling decision. The inter-cell interference coordination in the High-MAC sublayer will be in charge of interference coordination methods such as JP/CS CoMP.In Low-MAC sublayer the time-critical functions in the Low-MAC sublayer include the functions with stringent delay requirements (e.g. HARQ) or the functions where performance is proportional to latency (e.g. radio channel and signal measurements from PHY, random access control). It reduces the delay requirements on the fronthaul interface. Radio specific functions in the Low-MAC sublayer can for perform scheduling-related information processing and be reporting. It can also measure/estimate the activities on the configured operations or the served UE’s statistics and report periodically or as requested to the High-MAC sublayer. Option 6 (MAC-PHY split) The MAC and upper layers are in the central unit (CU). PHY layer and RF are in the DU. The interface between the CU and DUs carries data, configuration, and scheduling-related information (e.g. MCS, Layer Mapping, Beamforming, Antenna Configuration, resource block allocation, etc.) and measurements. Option 7 (Intra PHY split) Multiple realizations of this option are possible, including asymmetrical options which allow obtaining benefits of different sub-options for UL and DL independently. This option requires some kind of compression technique to reduce transport bandwidth requirements between the DU and CU. In the UL, FFT, and CP removal reside in the DU and for the two sub-variants, 7-1 and 7-2 are described below. Remaining functions reside in the CU.In the downlink, iFFT and CP addition reside in the DU and the rest of the PHY resides in the CU. Considering above there are three sub-variant available for this option described as below Option 7-1 In this option the UL, FFT, CP removal and possibly PRACH filtering functions reside in the DU, the rest of PHY functions reside in the CU. In the DL, iFFT and CP addition functions reside in the DU, the rest of PHY functions reside in the CU. Option 7-2 In this option the UL, FFT, CP removal, resource de-mapping and possibly pre-filtering functions reside in the DU, the rest of PHY functions reside in the CU. In the DL, iFFT, CP addition, resource mapping and precoding functions reside in the DU, the rest of PHY functions reside in the CU. Option 7-3 (Only for DL): Only the encoder resides in the CU, and the rest of PHY functions reside in the DU. Option 8 (PHY-RF split) This option allows to separate the RF and the PHY layer. This split permit centralization of processes at all protocol layer levels, resulting in very tight coordination of the RAN. This allows efficient support of functions such as CoMP, MIMO, load balancing, mobility. Benefits of RAN Spilt Architecture Some of the benefits of an architecture with the deployment flexibility to split and move New Radio (NR) functions between central and distributed units are below: Flexible HW implementations allows scalable cost-effective solutionsA split architecture (between central and distributed units) allows for coordination for performance features, load management, real-time performance optimization, and enables NFV/SDNConfigurable functional splits enables adaptation to various use cases, such as variable latency on transport Which split function to use where? The choice of how to split New Radio (NR) functions in the architecture depends on some factors related to radio network deployment scenarios, constraints and intended supported services. Some examples of such factors are: Support of specific QoS per offered services (e.g. low latency, high throughput)Support of specific user density and load demand per given geographical area (which may influence the level of RAN coordination)Availability transport networks with different performance levels, from ideal to non-idealApplication type e.g. Real-time or Non- Real TimeFeatures requirement at Radio Network level e.g. CA, eICIC, CoMP etc. Reference: 3GPP TR 38.801 Radio Access Architecture and Interfaces Release 14
http://www.dnsts.com.cn/news/72517.html

相关文章:

  • 网站设计素养品牌营销策划是什么意思
  • 梧州网站建设费用做的系统怎么和网站对接
  • 网站网络推广教程线上广告代理平台
  • 珠海网站推广排名扁平化网站下载
  • 做网站代管理三年商城系统软件开发
  • 益阳房地产网站建设艺术设计作品
  • 湖北网站建站系统哪家好wordpress类似于mdx主题
  • 锡山建设局网站该网站是恶意网站
  • 环保网站建设模板免费下载绍兴网站关键词优化
  • 临湘市建设局网站wordpress 自建页面
  • 怎么在本地搭建网站百度云主机上装网站
  • 网站的建设与规划网络的营销方法有哪些
  • 游戏网站开发实验报告网站伪静态作用
  • 网站建设费记在什么科目下杭州模板开发建站
  • 乒乓球网站建设目标二维码生成器官网
  • 庞各庄网站建设网站赚钱平台
  • 口碑好的定制网站建设提供商汉中专业网站建设公司
  • 网上有哪些购物网站为什么建设的网站有时候访问慢
  • cdn网站加速做淘宝浏览单的网站
  • 2016年建设网站赚钱吗进行网站开发 如何搭建环境
  • 延安网站建设做详情页比较好的网站
  • 网站创建想法品牌创意网站建设徕卡e
  • 新野网站建设网站是指什么
  • 深圳网站建设学习网站响应式图片切换代码
  • 网站开发排行榜设计师网址大全
  • 建站费用参考网站开发常用的数据库
  • 营销网站建设网站开发无锡网站建设方式
  • 曲靖住房和城乡建设局网站网站栏目词
  • 北京大兴网站建设公司咨询wordpress 腾讯视频
  • 网站建站建设多少钱2021最新新闻热点事件