在政务网站建设与管理上的讲话,桂林工作网招聘,什么域名不用备案,深圳专业网站设计怎么做STM32存储左右互搏 SPI总线读写FLASH W25QXX
FLASH是常用的一种非易失存储单元#xff0c;W25QXX系列Flash有不同容量的型号#xff0c;如W25Q64的容量为64Mbit#xff0c;也就是8MByte。这里介绍STM32CUBEIDE开发平台HAL库操作W25Q各型号FLASH的例程。
W25QXX介绍
W25QX…STM32存储左右互搏 SPI总线读写FLASH W25QXX
FLASH是常用的一种非易失存储单元W25QXX系列Flash有不同容量的型号如W25Q64的容量为64Mbit也就是8MByte。这里介绍STM32CUBEIDE开发平台HAL库操作W25Q各型号FLASH的例程。
W25QXX介绍
W25QXX的SOIC封装如下所示在采用SPI而不是QUAL SPI时管脚定义为 即由片选(/CS), 时钟(CLK), 数据输出(DO)和数据输入(DI)的组成4线SPI信号接口。VCC和GND提供电源和接地连接。
例程采用STM32H750VBT6芯片, FLASH可以选择为8/16/32/64/128/256/512/1024 Mbit的W25Q型号。
STM32工程配置
首先建立基本工程并设置时钟
选择硬件接口SPI2为FLASH连接接口片选采用软件代码控制方式单独设置为输出GPIO 不采用中断和DMA方式需要时可以再添加调用相对应的操作库函数及补充中断处理函数即可。 配置UART1用于控制打印 STM32H7资源较多可以将堆栈开大 保存并生成初始工程代码
STM32工程代码
UART串口printf打印输出实现参考STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)
建立W25Q访问的库头文件W25QXX.h:
#ifndef INC_W25QXX_H_
#define INC_W25QXX_H_#include main.huint8_t SPI2_ReadWriteByte(uint8_t TxData);//W25QXX serial chip list:
#define W25Q20_ID 0XEF11
#define W25Q40_ID 0XEF12
#define W25Q80_ID 0XEF13
#define W25Q16_ID 0XEF14
#define W25Q32_ID 0XEF15
#define W25Q64_ID 0XEF16
#define W25Q128_ID 0XEF17
#define W25Q256_ID 0XEF18
#define W25Q512_ID 0XEF19
#define W25Q1024_ID 0XEF20extern uint16_t W25QXX_TYPE; //To indicate W25QXX type used in this procedure//W25QXX chip select control function
#define W25QXX_CS(n) ( n ? HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET) : HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_RESET) )//command table for W25QXX access
#define W25X_WriteEnable 0x06
#define W25X_WriteDisable 0x04
#define W25X_ReadStatusReg1 0x05
#define W25X_ReadStatusReg2 0x35
#define W25X_ReadStatusReg3 0x15
#define W25X_WriteStatusReg1 0x01
#define W25X_WriteStatusReg2 0x31
#define W25X_WriteStatusReg3 0x11
#define W25X_ReadData 0x03
#define W25X_FastReadData 0x0B
#define W25X_FastReadDual 0x3B
#define W25X_PageProgram 0x02
#define W25X_BlockErase 0xD8
#define W25X_SectorErase 0x20
#define W25X_ChipErase 0xC7
#define W25X_PowerDown 0xB9
#define W25X_ReleasePowerDown 0xAB
#define W25X_DeviceID 0xAB
#define W25X_ManufactDeviceID 0x90
#define W25X_JedecDeviceID 0x9F
#define W25X_Enable4ByteAddr 0xB7
#define W25X_Exit4ByteAddr 0xE9uint8_t W25QXX_Init(void);
uint16_t W25QXX_ReadID(void); //Read W25QXX ID
uint8_t W25QXX_ReadSR(uint8_t reg_num); //Read from status register
void W25QXX_4ByteAddr_Enable(void); //Enable 4-byte address mode
void W25QXX_Write_SR(uint8_t reg_num,uint8_t d); //Write to status register
void W25QXX_Write_Enable(void); //Write enable
void W25QXX_Write_Disable(void); //Write disable
void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation w/o check
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead); //Read operation
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation
void W25QXX_Erase_Chip(void); //Erase whole chip
void W25QXX_Erase_Sector(uint32_t Sector_Num); //Erase sector in specific sector number
void W25QXX_Wait_Busy(void); //Wait idle status before next operation
void W25QXX_PowerDown(void); //Enter power-down mode
void W25QXX_WAKEUP(void); //Wake-up#endif /* INC_W25QXX_H_ */
建立W25Q访问的库源文件W25QXX.c:
#include W25QXX.hextern SPI_HandleTypeDef hspi2;
extern void PY_Delay_us_t(uint32_t Delay);
//Write and read one byte in SPI2
uint8_t SPI2_ReadWriteByte(uint8_t TxData)
{uint8_t Rxdata;HAL_SPI_TransmitReceive(hspi2,TxData,Rxdata,1, 1000);return Rxdata;
}uint16_t W25QXX_TYPEW25Q64_ID;//W25QXX initialization
uint8_t W25QXX_Init(void)
{uint8_t temp;W25QXX_CS(1);W25QXX_TYPEW25QXX_ReadID();if((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)){tempW25QXX_ReadSR(3); //read status register 3if((temp0X01)0) //judge address mode and configure to 4-byte address mode{W25QXX_CS(0);SPI2_ReadWriteByte(W25X_Enable4ByteAddr);W25QXX_CS(1);}}if((W25QXX_TYPE0x0000)||(W25QXX_TYPE0xFFFF)) return 0;else return 1;
}//Read status registers of W25QXX
//reg_num: register number from 1 to 3
//return: value of selected register//SR1 (default 0x00)
//BIT7 6 5 4 3 2 1 0
//SPR RV TB BP2 BP1 BP0 WEL BUSY
//SPR: default 0, status register protection bit used with WP
//TB,BP2,BP1,BP0: FLASH region write protection configuration
//WEL: write enable lock
//BUSY: busy flag (1: busy; 0: idle)//SR2
//BIT7 6 5 4 3 2 1 0
//SUS CMP LB3 LB2 LB1 (R) QE SRP1//SR3
//BIT7 6 5 4 3 2 1 0
//HOLD/RST DRV1 DRV0 (R) (R) WPS ADP ADS
uint8_t W25QXX_ReadSR(uint8_t reg_num)
{uint8_t byte0,command0;switch(reg_num){case 1:commandW25X_ReadStatusReg1; //To read status register 1break;case 2:commandW25X_ReadStatusReg2; //To read status register 2break;case 3:commandW25X_ReadStatusReg3; //To read status register 3break;default:commandW25X_ReadStatusReg1;break;}W25QXX_CS(0);SPI2_ReadWriteByte(command); //send commandbyteSPI2_ReadWriteByte(0Xff); //read dataW25QXX_CS(1);return byte;
}//Write status registers of W25QXX
//reg_num: register number from 1 to 3
//d: data for updating status register
void W25QXX_Write_SR(uint8_t reg_num,uint8_t d)
{uint8_t command0;switch(reg_num){case 1:commandW25X_WriteStatusReg1; //To write status register 1break;case 2:commandW25X_WriteStatusReg2; //To write status register 2break;case 3:commandW25X_WriteStatusReg3; //To write status register 3break;default:commandW25X_WriteStatusReg1;break;}W25QXX_CS(0);SPI2_ReadWriteByte(command); //send commandSPI2_ReadWriteByte(d); //write dataW25QXX_CS(1);
}
//W25QXX write enable
void W25QXX_Write_Enable(void)
{W25QXX_CS(0);SPI2_ReadWriteByte(W25X_WriteEnable);W25QXX_CS(1);
}
//W25QXX write disable
void W25QXX_Write_Disable(void)
{W25QXX_CS(0);SPI2_ReadWriteByte(W25X_WriteDisable);W25QXX_CS(1);
}//Read chip ID
//return:
//0XEF11 for W25Q20
//0XEF12 for W25Q40
//0XEF13 for W25Q80
//0XEF14 for W25Q16
//0XEF15 for W25Q32
//0XEF16 for W25Q64
//0XEF17 for W25Q128
//0XEF18 for W25Q256
uint16_t W25QXX_ReadID(void)
{uint16_t Temp 0;W25QXX_CS(0);SPI2_ReadWriteByte(0x90); //send commandSPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);Temp|SPI2_ReadWriteByte(0xFF)8; //read high byte dataTemp|SPI2_ReadWriteByte(0xFF); //read low byte dataW25QXX_CS(1);return Temp;
}
//Read W25QXX from specific address for specific byte length
//pBuffer: data buffer
//ReadAddr: specific address
//NumByteToRead: specific byte length (max 65535)
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{uint16_t i;W25QXX_CS(0);SPI2_ReadWriteByte(W25X_ReadData); //send read commandif((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)) //send highest 8-bit address{SPI2_ReadWriteByte((uint8_t)((ReadAddr)24));}SPI2_ReadWriteByte((uint8_t)((ReadAddr)16)); //send 24-bit addressSPI2_ReadWriteByte((uint8_t)((ReadAddr)8));SPI2_ReadWriteByte((uint8_t)ReadAddr);for(i0;iNumByteToRead;i){pBuffer[i]SPI2_ReadWriteByte(0XFF); //read data}W25QXX_CS(1);
}//Write W25QXX not more than 1 page (256 bytes)
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 256)
void W25QXX_Write_Page(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{uint16_t i;W25QXX_Write_Enable(); //write enableW25QXX_CS(0);SPI2_ReadWriteByte(W25X_PageProgram); //send write commandif((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)) //send highest 8-bit address{SPI2_ReadWriteByte((uint8_t)((WriteAddr)24));}SPI2_ReadWriteByte((uint8_t)((WriteAddr)16)); //send 24-bit addressSPI2_ReadWriteByte((uint8_t)((WriteAddr)8));SPI2_ReadWriteByte((uint8_t)WriteAddr);for(i0;iNumByteToWrite;i)SPI2_ReadWriteByte(pBuffer[i]); //write dataW25QXX_CS(1);W25QXX_Wait_Busy();
}//Write W25QXX w/o erase check and w/o byte number restriction
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 65535)
void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{uint16_t remained_byte_num_in_page;remained_byte_num_in_page256-WriteAddr%256; //remained byte number in pageif( NumByteToWrite remained_byte_num_in_page ) remained_byte_num_in_page NumByteToWrite; //data can be written in single pagewhile(1){W25QXX_Write_Page(pBuffer,WriteAddr,remained_byte_num_in_page);if(NumByteToWriteremained_byte_num_in_page)break; //end write operationelse //NumByteToWriteremained_byte_num_in_page{pBufferremained_byte_num_in_page;WriteAddrremained_byte_num_in_page;NumByteToWrite-remained_byte_num_in_page;if(NumByteToWrite256)remained_byte_num_in_page256; //for whole page writeelse remained_byte_num_in_pageNumByteToWrite; //for non-whole page write}};
}//Write W25QXX w/ erase after check and w/o byte number restriction
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 65535)
uint8_t W25QXX_BUFFER[4096];
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{uint32_t secpos;uint16_t secoff;uint16_t secremain;uint16_t i;uint8_t * W25QXX_BUF;W25QXX_BUFW25QXX_BUFFER;secposWriteAddr/4096; //sector number (16 pages for 1 sector) for destination addresssecoffWriteAddr%4096; //offset address in sector for destination addresssecremain4096-secoff; //remained space for sectorif(NumByteToWritesecremain)secremainNumByteToWrite; //data can be written in single sectorwhile(1){W25QXX_Read(W25QXX_BUF,secpos*4096,4096); //read sector data for ease necessity judgmentfor(i0;isecremain;i) //check sector data status{if(W25QXX_BUF[secoffi]!0XFF) break; //ease necessary}if(isecremain) //for ease{W25QXX_Erase_Sector(secpos); //ease sectorfor(i0;isecremain;i) //data copy{W25QXX_BUF[isecoff]pBuffer[i];}W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096); //write sector}else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain); //write data for sector unnecessary to eraseif(NumByteToWritesecremain)break; //for operation endelse //for operation continuing{secpos; //sector number 1secoff0; //offset address from 0pBuffersecremain; //pointer adjustmentWriteAddrsecremain; //write address adjustmentNumByteToWrite-secremain; //write number adjustmentif(NumByteToWrite4096) secremain4096; //not last sectorelse secremainNumByteToWrite; //last sector}};
}//Erase whole chip, long waiting...
void W25QXX_Erase_Chip(void)
{W25QXX_Write_Enable(); //write enableW25QXX_Wait_Busy();W25QXX_CS(0);SPI2_ReadWriteByte(W25X_ChipErase); //send erase commandW25QXX_CS(1);W25QXX_Wait_Busy(); //wait for erase complete
}//Erase one sector
//Sector_Num: sector number
void W25QXX_Erase_Sector(uint32_t Sector_Num)
{Sector_Num*4096;W25QXX_Write_Enable(); //write enableW25QXX_Wait_Busy();W25QXX_CS(0);SPI2_ReadWriteByte(W25X_SectorErase); //send erase commandif((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)) //send highest 8-bit address{SPI2_ReadWriteByte((uint8_t)((Sector_Num)24));}SPI2_ReadWriteByte((uint8_t)((Sector_Num)16)); //send 24-bit addressSPI2_ReadWriteByte((uint8_t)((Sector_Num)8));SPI2_ReadWriteByte((uint8_t)Sector_Num);W25QXX_CS(1);W25QXX_Wait_Busy(); //wait for erase complete
}//Wait idle status before next operation
void W25QXX_Wait_Busy(void)
{while((W25QXX_ReadSR(1)0x01)0x01); //wait for busy flag cleared
}//Enter power-down mode
#define tDP_us 3
void W25QXX_PowerDown(void)
{W25QXX_CS(0);SPI2_ReadWriteByte(W25X_PowerDown); //send power-down commandW25QXX_CS(1);PY_Delay_us_t(tDP_us); //tDP
}
//Wake-up
#define tRES1_us 3
void W25QXX_WAKEUP(void)
{W25QXX_CS(0);SPI2_ReadWriteByte(W25X_ReleasePowerDown);//send release power-down commandW25QXX_CS(1);PY_Delay_us_t(tRES1_us); //tRES1
}
main.c文件操作代码里实现串口接收1个字节的指令实现FLASH的ID读取一页的写入一页的读出三个功能。其它功能可以根据需要自行增加。
/* USER CODE BEGIN Header */
/********************************************************************************* file : main.c* brief : Main program body******************************************************************************* attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include main.h/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include usart.h
#include W25QXX.h
#include string.h
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{__IO uint32_t firstms, secondms;__IO uint32_t counter 0;firstms HAL_GetTick()1;secondms firstms1;while(uwTick!firstms) ;while(uwTick!secondms) counter;usDelayBase ((float)counter)/1000;
}void PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum (uint32_t)(Delay*usDelayBase);delayReg 0;while(delayReg!usNum) delayReg;
}void PY_usDelayOptimize(void)
{__IO uint32_t firstms, secondms;__IO float coe 1.0;firstms HAL_GetTick();PY_Delay_us_t(1000000) ;secondms HAL_GetTick();coe ((float)1000)/(secondms-firstms);usDelayBase coe*usDelayBase;
}void PY_Delay_us(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t msNum Delay/1000;__IO uint32_t usNum (uint32_t)((Delay%1000)*usDelayBase);if(msNum0) HAL_Delay(msNum);delayReg 0;while(delayReg!usNum) delayReg;
}
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/SPI_HandleTypeDef hspi2;UART_HandleTypeDef huart1;/* USER CODE BEGIN PV */
uint8_t uart1_rx[16];
uint8_t cmd;
uint32_t Flash_Access_Addr 0;
/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_SPI2_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define page_byte_size 256
uint8_t sdbuffer[page_byte_size];
/* USER CODE END 0 *//*** brief The application entry point.* retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* Configure the peripherals common clocks */PeriphCommonClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_SPI2_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();HAL_UART_Receive_IT(huart1, uart1_rx, 1);W25QXX_Init();/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(cmd1) //Read ID{cmd 0;printf(FLASH ID0x%x\r\n\r\n, W25QXX_ReadID());printf(W25Q80_ID: 0XEF13\r\n);printf(W25Q16_ID: 0XEF14\r\n);printf(W25Q32_ID: 0XEF15\r\n);printf(W25Q64_ID: 0XEF16\r\n);printf(W25Q128_ID: 0XEF17\r\n);printf(W25Q256_ID: 0XEF18\r\n);printf(W25Q512_ID: 0XEF18\r\n);printf(W25Q1024_ID: 0XEF20\r\n);}if(cmd2) //Write one page{cmd 0;for(uint32_t i0;ipage_byte_size;i){sdbuffer[i]i;}Flash_Access_Addr 0;W25QXX_Write(sdbuffer, Flash_Access_Addr, page_byte_size);printf(Write to W25Q6XX done!\r\n);}if(cmd3)//Read one page{cmd 0;memset(sdbuffer, 0, page_byte_size);printf(Start to read W25QXX......\r\n);Flash_Access_Addr 0;W25QXX_Read(sdbuffer, Flash_Access_Addr, page_byte_size);for(uint32_t i0; ipage_byte_size; i){printf(%d , sdbuffer[i]);}printf(\r\n);}/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** brief System Clock Configuration* retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct {0};RCC_ClkInitTypeDef RCC_ClkInitStruct {0};/** Supply configuration update enable*/HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);/** Configure the main internal regulator output voltage*/__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}__HAL_RCC_SYSCFG_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType RCC_OSCILLATORTYPE_HSI;RCC_OscInitStruct.HSIState RCC_HSI_DIV1;RCC_OscInitStruct.HSICalibrationValue RCC_HSICALIBRATION_DEFAULT;RCC_OscInitStruct.PLL.PLLState RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource RCC_PLLSOURCE_HSI;RCC_OscInitStruct.PLL.PLLM 4;RCC_OscInitStruct.PLL.PLLN 60;RCC_OscInitStruct.PLL.PLLP 2;RCC_OscInitStruct.PLL.PLLQ 2;RCC_OscInitStruct.PLL.PLLR 2;RCC_OscInitStruct.PLL.PLLRGE RCC_PLL1VCIRANGE_3;RCC_OscInitStruct.PLL.PLLVCOSEL RCC_PLL1VCOWIDE;RCC_OscInitStruct.PLL.PLLFRACN 0;if (HAL_RCC_OscConfig(RCC_OscInitStruct) ! HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;RCC_ClkInitStruct.SYSCLKSource RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.SYSCLKDivider RCC_SYSCLK_DIV1;RCC_ClkInitStruct.AHBCLKDivider RCC_HCLK_DIV2;RCC_ClkInitStruct.APB3CLKDivider RCC_APB3_DIV2;RCC_ClkInitStruct.APB1CLKDivider RCC_APB1_DIV2;RCC_ClkInitStruct.APB2CLKDivider RCC_APB2_DIV2;RCC_ClkInitStruct.APB4CLKDivider RCC_APB4_DIV2;if (HAL_RCC_ClockConfig(RCC_ClkInitStruct, FLASH_LATENCY_4) ! HAL_OK){Error_Handler();}
}/*** brief Peripherals Common Clock Configuration* retval None*/
void PeriphCommonClock_Config(void)
{RCC_PeriphCLKInitTypeDef PeriphClkInitStruct {0};/** Initializes the peripherals clock*/PeriphClkInitStruct.PeriphClockSelection RCC_PERIPHCLK_CKPER;PeriphClkInitStruct.CkperClockSelection RCC_CLKPSOURCE_HSI;if (HAL_RCCEx_PeriphCLKConfig(PeriphClkInitStruct) ! HAL_OK){Error_Handler();}
}/*** brief SPI2 Initialization Function* param None* retval None*/
static void MX_SPI2_Init(void)
{/* USER CODE BEGIN SPI2_Init 0 *//* USER CODE END SPI2_Init 0 *//* USER CODE BEGIN SPI2_Init 1 *//* USER CODE END SPI2_Init 1 *//* SPI2 parameter configuration*/hspi2.Instance SPI2;hspi2.Init.Mode SPI_MODE_MASTER;hspi2.Init.Direction SPI_DIRECTION_2LINES;hspi2.Init.DataSize SPI_DATASIZE_8BIT;hspi2.Init.CLKPolarity SPI_POLARITY_LOW;hspi2.Init.CLKPhase SPI_PHASE_1EDGE;hspi2.Init.NSS SPI_NSS_SOFT;hspi2.Init.BaudRatePrescaler SPI_BAUDRATEPRESCALER_2;hspi2.Init.FirstBit SPI_FIRSTBIT_MSB;hspi2.Init.TIMode SPI_TIMODE_DISABLE;hspi2.Init.CRCCalculation SPI_CRCCALCULATION_DISABLE;hspi2.Init.CRCPolynomial 0x0;hspi2.Init.NSSPMode SPI_NSS_PULSE_ENABLE;hspi2.Init.NSSPolarity SPI_NSS_POLARITY_LOW;hspi2.Init.FifoThreshold SPI_FIFO_THRESHOLD_01DATA;hspi2.Init.TxCRCInitializationPattern SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;hspi2.Init.RxCRCInitializationPattern SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;hspi2.Init.MasterSSIdleness SPI_MASTER_SS_IDLENESS_00CYCLE;hspi2.Init.MasterInterDataIdleness SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;hspi2.Init.MasterReceiverAutoSusp SPI_MASTER_RX_AUTOSUSP_DISABLE;hspi2.Init.MasterKeepIOState SPI_MASTER_KEEP_IO_STATE_DISABLE;hspi2.Init.IOSwap SPI_IO_SWAP_DISABLE;if (HAL_SPI_Init(hspi2) ! HAL_OK){Error_Handler();}/* USER CODE BEGIN SPI2_Init 2 *//* USER CODE END SPI2_Init 2 */}/*** brief USART1 Initialization Function* param None* retval None*/
static void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance USART1;huart1.Init.BaudRate 115200;huart1.Init.WordLength UART_WORDLENGTH_8B;huart1.Init.StopBits UART_STOPBITS_1;huart1.Init.Parity UART_PARITY_NONE;huart1.Init.Mode UART_MODE_TX_RX;huart1.Init.HwFlowCtl UART_HWCONTROL_NONE;huart1.Init.OverSampling UART_OVERSAMPLING_16;huart1.Init.OneBitSampling UART_ONE_BIT_SAMPLE_DISABLE;huart1.Init.ClockPrescaler UART_PRESCALER_DIV1;huart1.AdvancedInit.AdvFeatureInit UART_ADVFEATURE_NO_INIT;if (HAL_UART_Init(huart1) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_SetTxFifoThreshold(huart1, UART_TXFIFO_THRESHOLD_1_8) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_SetRxFifoThreshold(huart1, UART_RXFIFO_THRESHOLD_1_8) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_DisableFifoMode(huart1) ! HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** brief GPIO Initialization Function* param None* retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOB_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET);/*Configure GPIO pin : PB12 */GPIO_InitStruct.Pin GPIO_PIN_12;GPIO_InitStruct.Mode GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull GPIO_NOPULL;GPIO_InitStruct.Speed GPIO_SPEED_FREQ_VERY_HIGH;HAL_GPIO_Init(GPIOB, GPIO_InitStruct);}/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{if(huarthuart1){cmd uart1_rx[0];HAL_UART_Receive_IT(huart1, uart1_rx, 1);}}
/* USER CODE END 4 *//*** brief This function is executed in case of error occurrence.* retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef USE_FULL_ASSERT
/*** brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* param file: pointer to the source file name* param line: assert_param error line source number* retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf(Wrong parameters value: file %s on line %d\r\n, file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
STM32例程测试
串口指令0x01测试效果如下
串口指令0x02测试效果如下 串口指令0x03测试效果如下
STM32例程下载
STM32H750VBT6读写W25QXX例程下载
–End–