当前位置: 首页 > news >正文

综合返利商城网站建设wordpress 父页面

综合返利商城网站建设,wordpress 父页面,flash网站什么意思,做网页大概需要多少钱中山大学附属第一医院中科大先进院等研究团队#xff0c;提出了一种深度学习模型——图信号处理-图卷积网络 (GSP-GCNs)#xff0c;利用从涉及声调调节的特定任务中获得的事件相关脑电图数据来诊断帕金森病。 震颤、动作迟缓、表情僵硬……提起帕金森病#xff0c;多数…中山大学附属第一医院中科大先进院等研究团队提出了一种深度学习模型——图信号处理-图卷积网络 (GSP-GCNs)利用从涉及声调调节的特定任务中获得的事件相关脑电图数据来诊断帕金森病。 震颤、动作迟缓、表情僵硬……提起帕金森病多数人会率先想到「手抖」殊不知在患病中晚期患者甚至还会出现平衡障碍、翻身困难等问题下肢、头部都会不自主地抖严重影响生活质量。 中国康复医学会于 2023 年 4 月发布的数据显示我国现有帕金森病患者 300 多万超过全世界总数的四分之一并且每年新增加约 10 万预计到 2030 年我国帕金森病患者总数将达到 500 万人几乎达到全球患病人数的一半。 然而目前帕金森病的发病机制尚未可知仅 20% 的病例可归因于特定的遗传因素因此早期诊断面临重大挑战。 静息态脑电 (electroencephalogram,EEG) 因其无创性以及捕捉高时序分辨率脑活动的能力已成为帕金森病诊断的重要途径。近年来已经有相关研究开始将深度学习与 EEG 结合进行帕金森病的早期诊断。然而这些方法大多需要基于平稳的 EEG 信号才能奏效无法捕捉帕金森病相关脑活动变化的动态特征。 针对于此中国科学院深圳先进技术研究院和中山大学附属第一医院的研究人员利用帕金森病言语运动任务的异常脑电特征提出了一种具有可解释性的图信号处理-图卷积网络 (GSP-GCNs) 模型利用言语基频调控任务脑电数据通过挖掘帕金森病患者大尺度脑功能网络的神经标记物实现了帕金森病的高精度智能诊断。 获取论文 https://www.nature.com/articles/s41746-023-00983-9 公众号后台回复「帕金森」获取完整 PDF 数据集百位参与者的发声实验 研究团队邀请到了 100 名参与者其中包括 52 名被诊断为特发性帕金森病的患者24 名女性和 28 名男性和 48 名与患者性别、年龄相匹配的健康对照。所有参与者都进行了发声实验。 在实验过程中参与者需要持续发出元音 5-6 秒持续时间为 200 毫秒。每次发声包括 4-5 次扰动以伪随机方式呈现。参与者连续发声 20-25 次共进行 100 次试验。 当参与者进行发声实验时研究人员使用 NetStation 软件以 1kHz 的采样频率使用连接到 Net Amps 300 放大器 (EGI) 的 64 导联电极帽来记录 EEG 信号。 GSP-GCNs模型由4个连续组件组成 GSP-GCNs 模型框架包括 4 个模块图信号处理模块 (GSP)、图网络模块 (graph-network module)、分类器 (classifier) 和可解释模型 ( interpretable model)。 首先GSP 模块对大规模 EEG 网络进行分析和处理识别动态连接模式其次图网络模块捕获这些连接模式作为分类的关键特征随后分类器组件利用这些提取的特征来区分帕金森病患者和健康个体最后可解释性模型通过提供全局可视化学习基本特征并将其与语音相关的 EEG 微态特征对齐来增强框架的可解释性。 通过采用这种创新方法GSP-GCNs 框架旨在提供说明性信息以促进深度学习模型在具有任务相关 EEG 数据的帕金森病诊断中的使用。 模型效果具有较好的解释性 该研究提出了四个基于图网络的模型: PCC GCN、 PLV GCN、 PCC GSP-GCN 和 PLV GSP-GCN。 其中PCC (Pearson Correlation Coefficient)、PLV (Phase Locking Value) 分别代表用于构建脑网络的不同特征。然而无论特征类型如何GSP-GCNs 模型都表现出明显优于 GCNs 模型的性能。 如下图所示该研究所提出的 GSP-GCN 模型的 ROC 值均保持在 0.08 以下。这凸显了 GSP 通过图聚合平衡单跳和多跳网络的局部和全局信息从而提高分类性能的潜力。 通过结合局部和全局信息该研究提出的 GSP-GCNs 模型区分帕金森病患者与正常对照的平均分类准确率达 90.2%比其他深度学习模型显著提高 9.5%。此外GCNs 模型显示出比所有基线模型 (baseline models) 更低的计算复杂度。 GSP-GCNs 模型与其他模型 分类性能、计算复杂度对比 此外研究团队通过分析 GSP-GCNs 模型的可解释性揭示了其对大尺度脑电图网络和 MS5 微状态脑电地形图之间差异分布的学习结果。帕金森患者与正常对照在言语基频调控任务中存在显著差异的脑区主要位于的左腹前运动皮层、颞上回和 Broca 区域这与既往发现的帕金森病言语运动障碍脑网络存在高度一致性。 这说明该研究提出的 GSP-GCN 模型能够从大规模网络中识别出独特的脑电图生物标志物并提供了良好的可解释性。 帕金森病组和正常对照组在言语运动任务中的 ERP 微状态类分布对比 右上角标注PD为帕金森病组HC为正常对照组 更重要的是该模型可以有效学习帕金森病患者和正常对照组在听觉反馈任务中脑功能网络之间的差异为分析深度学习应用于疾病诊断分类模型的可解释性提供了新方法。 AI识别生物标志物助力帕金森病诊断 帕金森病起病隐匿进展缓慢尽早诊断、及时干预对提高疗效极为重要。而帕金森病早期诊断的重要途径在于识别各种行为领域的生物标志物包括笔迹模式、运动功能、步态模式和语言特征等。 机器学习近年来已成为医学影像领域的一个强大工具这项技术有助于从复杂的神经成像数据中提取高级特征和模式。此外由于其卓越的多维分析能力机器学习还可用于医学影像领域的个体分类。本次中山附医联合研究团队所提出的 GSP-GCNs 模型便是通过挖掘帕金森病患者语言相关的的神经标记物实现诊断而 AI 深度学习模型运用于帕金森病各种行为领域方面的识别还有十分可观的发展空间。 与之类似福建医科大学附属协和医院研究团队近期开发了一种机器学习模型预测帕金森病患者在个体水平上患冻结步态的风险可用于早期识别有可能发展成延迟冻结步态的帕金森病患者从而为临床医生预防和干预帕金森病患者的冻结步态症状提供有价值的指导。 此外University College London (UCL) 的研究团队使用 300 名帕金森病患者和 300 名健康志愿者的视频数据训练了人工智能算法使其能够识别帕金森病患者的运动模式在诊断帕金森病方面的准确率高达 90%。 在未来期待基于神经成像学的机器学习 AI 能进一步被运用帮助人们有效识别帕金森病症状相关的各种行为领域的生物标志物从而推动帕金森病早期诊断的进一步发展。
http://www.dnsts.com.cn/news/10638.html

相关文章:

  • 网站微信开发wordpress 添加用户登录
  • 闸北品牌网站建设用html做静态网站
  • php企业网站开发实验总结山东微商网站建设
  • h5制作工具网站做网站哪里找
  • 工作室 网站经营性备案湖南自考网站建设与管理
  • 网站开发成本核算郑州平台制作
  • 郑州网站制作公顺的网站建设效果
  • 设计网站广告语百度推广管理平台登录
  • 满屏网站设计做多大企业网站建设心得
  • 可视化网站建设软件有哪些网址大全直接下载
  • 哪个网站可以做条形码天津网站建设制作免费
  • 南京市玄武区建设局网站电子商务网站的建设目标
  • 泉州哪里有搭建网站的公司国内crm系统十大排名
  • 建网站价格 建设网站需要多少钱6python培训班
  • 网站服务器 免费的吗wordpress视频去广告
  • 网站建站的具体流程阿里云如何搭建网站
  • 做搜狗网站优化快速排室内设计效果图一套方案
  • 宁波好品质品牌网站设计哪家好论坛类网站开发
  • 制作php网站创新网站建设方案书
  • 网站域名所有权证明宁波住房和城乡建设培训网站
  • 网站建设平台选用分析网店运营的基本流程
  • 漫画网站建设教程关于网站建设需要了解什么东西
  • 怎么做淘宝客网站页面wordpress怎么关闭网站
  • wordpress搬站流程成都网站建设推广在
  • 做网站的一般尺寸wordpress虚拟资源交易平台
  • 页面简洁的导航网站腾讯云注册域名后怎么做网站
  • 网站开发公司销售总监岗位要求专业网站建设集团
  • 睿达科网络 网站建设关于网站建设的题目
  • 做网站怎么排版好看杭州建设职业学校官方网站
  • 本溪网站建设兼职wordpress如何改成中文字体